Citation: | PEI Yan-yu, YANG Xiao-bin, CHUAN Jin-ping, WU Xue-song, CHENG Hong-ming, Lü Xiang-feng. Time series prediction of microseismic energy level based on feature extraction of one-dimensional convolutional neural network[J]. Chinese Journal of Engineering, 2021, 43(7): 1003-1009. doi: 10.13374/j.issn2095-9389.2020.11.22.001 |
[1] |
姜耀東, 趙毅鑫. 我國煤礦沖擊地壓的研究現狀: 機制、預警與控制. 巖石力學與工程學報, 2015, 34(11):2188
Jiang Y D, Zhao Y X. State of the art: investigation on mechanism, forecast and control of coal bumps in China. Chin J Rock Mech Eng, 2015, 34(11): 2188
|
[2] |
姜耀東, 趙毅鑫, 劉文崗, 等. 煤巖沖擊失穩的機理和實驗研究. 北京: 科學出版社, 2009
Jiang Y D, Zhao Y X, Liu W G, et al. Investigation on the Mechanism of Coal Bumps and Relating Experiment. Beijing: Science Press, 2009
|
[3] |
苗小虎, 姜福興, 王存文, 等. 微地震監測揭示的礦震誘發沖擊地壓機理研究. 巖土工程學報, 2011, 33(6):971
Miao X H, Jiang F X, Wang C W, et al. Mechanism of microseism-inducdrock burst revealed by microseismic monitoring. Chin J Geotech Eng, 2011, 33(6): 971
|
[4] |
袁瑞甫, 李化敏, 李懷珍. 煤柱型沖擊地壓微震信號分布特征及前兆信息判別. 巖石力學與工程學報, 2012, 31(1):80 doi: 10.3969/j.issn.1000-6915.2012.01.010
Yuan R F, Li H M, Li H Z. Distribution of microseismic signal and discrimination of portentous information of pillar type rockburst. Chin J Rock Mech Eng, 2012, 31(1): 80 doi: 10.3969/j.issn.1000-6915.2012.01.010
|
[5] |
Pytel W, ?witoń J, Wójcik A. The effect of mining face’s direction on the observed seismic activity. Int J Coal Sci Technol, 2016, 3(3): 322 doi: 10.1007/s40789-016-0122-5
|
[6] |
李楠, 王恩元, GE Mao-chen. 微震監測技術及其在煤礦的應用現狀與展望. 煤炭學報, 2017, 42(增刊1): 83
Li N, Wang E Y, Ge M C. Microseismic monitoring technique and its applications at coal mines: present status and future prospects. J China Coal Soc, 2017, 42(S1): 83
|
[7] |
呂進國, 潘立. 微震預警沖擊地壓的時間序列方法. 煤炭學報, 2010, 35(12):2002
Lü J G, Pan L. Microseismic predicting coal bump by time series method. J China Coal Soc, 2010, 35(12): 2002
|
[8] |
陸菜平, 竇林名, 吳興榮, 等. 巖體微震監測的頻譜分析與信號識別. 巖土工程學報, 2005, 27(7):772 doi: 10.3321/j.issn:1000-4548.2005.07.010
Lu C P, Dou L M, Wu X R, et al. Frequency spectrum analysis on microseismic monitoring and signal differentiation of rock material. Chin J Geotech Eng, 2005, 27(7): 772 doi: 10.3321/j.issn:1000-4548.2005.07.010
|
[9] |
蔡武, 竇林名, 李振雷, 等. 微震多維信息識別與沖擊礦壓時空預測— —以河南義馬躍進煤礦為例. 地球物理學報, 2014, 57(8):2687 doi: 10.6038/cjg20140827
Cai W, Dou L M, Li Z L, et al. Microseismic multidimensional information identification and spatio-temporal forecasting of rock burst: a case study of Yima Yuejin coal mine, Henan, China. Chin J Geophys, 2014, 57(8): 2687 doi: 10.6038/cjg20140827
|
[10] |
郭來功, 戴廣龍, 楊本才, 等. 基于微震成像的采煤工作面應力異常監測. 浙江大學學報: 工學版, 2018, 52(10):2014
Guo L G, Dai G L, Yang B C, et al. Stress anomaly monitoring of coal face based on microseismic tomography. J Zhejiang Univ Eng Sci, 2018, 52(10): 2014
|
[11] |
田向輝, 李振雷, 宋大釗, 等. 某沖擊地壓頻發工作面微震沖擊前兆信息特征及預警方法研究. 巖石力學與工程學報, 2020, 39(12):2471
Tian X H, Li Z L, Song D Z, et al. Study on microseismic precursors and early warning methods of rockbursts in a working face. Chin J Rock Mech Eng, 2020, 39(12): 2471
|
[12] |
喬美英, 程鵬飛, 劉震震. 基于GA-SVM的礦井涌水量預測. 煤田地質與勘探, 2017, 45(6):117 doi: 10.3969/j.issn.1001-1986.2017.06.019
Qiao M Y, Cheng P F, Liu Z Z. Mine water inflow prediction based on GA-SVM. Coal Geol Explor, 2017, 45(6): 117 doi: 10.3969/j.issn.1001-1986.2017.06.019
|
[13] |
趙毅鑫, 楊志良, 馬斌杰, 等. 基于深度學習的大采高工作面礦壓預測分析及模型泛化. 煤炭學報, 2020, 45(1):54
Zhao Y X, Yang Z L, Ma B J, et al. Deep learning prediction and model generalization of ground pressure for deep longwall face with large mining height. J China Coal Soc, 2020, 45(1): 54
|
[14] |
李樹剛, 馬莉, 潘少波, 等. 基于循環神經網絡的煤礦工作面瓦斯濃度預測模型研究. 煤炭科學技術, 2020, 48(1):33
Li S G, Ma L, Pan S B, et al. Research on prediction model of gas concentration based on RNN in coal mining face. Coal Sci Technol, 2020, 48(1): 33
|
[15] |
汪海晉, 尹宗宇, 柯臻錚, 等. 基于一維卷積神經網絡的螺旋銑刀具磨損監測. 浙江大學學報: 工學版, 2020, 54(5):931
Wang H J, Yin Z Y, Ke Z Z, et al. Wear monitoring of helical milling tool based on one-dimensional convolutional neural network. J Zhejiang Univ Eng Sci, 2020, 54(5): 931
|
[16] |
Chen Z Q, Li C, Sanchez R V. Gearbox fault identification and classification with convolutional neural networks. Shock Vib, 2015(2): 1
|
[17] |
李俊, 劉永葆, 余又紅. 卷積神經網絡和峭度在軸承故障診斷中的應用. 航空動力學報, 2019, 34(11):2423
Li J, Liu Y B, Yu Y H. Application of convolutional neural network and kurtosis in fault diagnosis of rolling bearing. J Aerosp Power, 2019, 34(11): 2423
|
[18] |
朱會杰, 王新晴, 芮挺, 等. 基于平移不變CNN的機械故障診斷研究. 振動與沖擊, 2019, 38(5):45
Zhu H J, Wang X Q, Rui T, et al. Machinery fault diagnosis based on shift invariant CNN. J Vib Shock, 2019, 38(5): 45
|
[19] |
Perol T, Gharbi M, Denolle M. Convolutional neural network for earthquake detection and location. Sci Adv, 2018, 4(2): e1700578
|
[20] |
董志鵬, 王密, 李德仁, 等. 遙感影像目標的尺度特征卷積神經網絡識別法. 測繪學報, 2019, 48(10):1285 doi: 10.11947/j.AGCS.2019.20180393
Dong Z P, Wang M, Li D R, et al. Object detection in remote sensing imagery based on convolutional neural networks with suitable scale features. Acta Geod Cartographica Sinica, 2019, 48(10): 1285 doi: 10.11947/j.AGCS.2019.20180393
|
[21] |
趙康寧, 蒲天驕, 王新迎, 等. 基于改進貝葉斯神經網絡的光伏出力概率預測. 電網技術, 2019, 43(12):4377
Zhao K N, Pu T J, Wang X Y, et al. Probabilistic forecasting for photovoltaic power based on improved bayesian neural network. Power Syst Technol, 2019, 43(12): 4377
|
[22] |
金列俊, 詹建明, 陳俊華, 等. 基于一維卷積神經網絡的鉆桿故障診斷. 浙江大學學報: 工學版, 2020, 54(3):467
Jin L J, Zhan J M, Chen J H, et al. Drill pipe fault diagnosis method based on one-dimensional convolutional neural network. J Zhejiang Univ Eng Sci, 2020, 54(3): 467
|
[23] |
高佳豪, 郭瑜, 伍星. 基于SANC和一維卷積神經網絡的齒輪箱軸承故障診斷. 振動與沖擊, 2020, 39(19):204
Gao J H, Guo Y, Wu X. Gearbox bearing fault diagnosis based on SANC and 1-D CNN. J Vib Shock, 2020, 39(19): 204
|
[24] |
夏永學, 康立軍, 齊慶新, 等. 基于微震監測的5個指標及其在沖擊地壓預測中的應用. 煤炭學報, 2010, 35(12):2011
Xia Y X, Kang L J, Qi Q X, et al. Five indexes of microseismic and their application in rock burst forecastion. J China Coal Soc, 2010, 35(12): 2011
|
[25] |
張永峰, 陸志強. 基于集成神經網絡的剩余壽命預測. 工程科學學報, 2020, 42(10):1372
Zhang Y F, Lu Z Q. Remaining useful life prediction based on an integrated neural network. Chin J Eng, 2020, 42(10): 1372
|
[26] |
Kingma D, Ba J. Adam: A method for stochastic optimization // International Conference for Learning Representations. San Diego, 2015: 1
|
[27] |
劉定祥, 喬少杰, 張永清, 等. 不平衡分類的數據采樣方法綜述. 重慶理工大學學報: 自然科學, 2019, 33(7):102
Liu D X, Qiao S J, Zhang Y Q, et al. A survey on data sampling methods in imbalance classification. J Chongqing Univ Technol Nat Sci, 2019, 33(7): 102
|
[28] |
Liu X Y, Wu J X, Zhou Z H. Exploratory undersampling for class-imbalance learning. IEEE Trans Syst Man Cybern Part B (Cybern)
|