Citation: | WANG Yuan, LI Shang, LIU Sheng-chu, HONG Kang, ZHANG Li-chang, WANG Ru-yi, PAN Mu. Influence of ionomer on the durability of Pt/C catalyst[J]. Chinese Journal of Engineering, 2021, 43(8): 1073-1080. doi: 10.13374/j.issn2095-9389.2020.11.17.004 |
[1] |
Cherevko S, Kulyk N, Mayrhofer K J J. Durability of platinum-based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum. Nano Energy, 2016, 29: 275 doi: 10.1016/j.nanoen.2016.03.005
|
[2] |
孫珊, 劉桎東, 刁鵬. 吡咯/炭黑氧化物復合氧陰極材料的制備及催化性能. 工程科學學報, 2019, 41(2):216
Sun S, Liu Z D, Diao P. Preparation and catalytic studies of pyrrole-doped carbon black oxide cathode materials for oxygen reduction reactions. Chin J Eng, 2019, 41(2): 216
|
[3] |
Souza N E, Bott-Neto J L, Rocha T A, et al. Support modification in Pt/C electrocatalysts for durability increase: A degradation study assisted by identical location transmission electron microscopy. Electrochimica Acta, 2018, 265: 523 doi: 10.1016/j.electacta.2018.01.180
|
[4] |
Bandarenka A S, Ventosa E, Maljusch A, et al. Techniques and methodologies in modern electrocatalysis: Evaluation of activity, selectivity and stability of catalytic materials. Analyst, 2014, 139(6): 1274 doi: 10.1039/c3an01647a
|
[5] |
黃康, 朱梅婷, 張飛鵬, 等. 一種高效雙功能電催化劑CoP/Co@NPC@rGO的制備. 工程科學學報, 2020, 42(1):91
Huang K, Zhu M T, Zhang F P, et al. Preparation of CoP/Co@NPC@rGO nanocomposites with an efficient bifunctiona electrocatalyst for hydrogen evolution and oxygen evolution reaction. Chin J Eng, 2020, 42(1): 91
|
[6] |
Arenz M, Zana A. Fuel cell catalyst degradation: Identical location electron microscopy and related methods. Nano Energy, 2016, 29: 299 doi: 10.1016/j.nanoen.2016.04.027
|
[7] |
Meier J C, Galeano C, Katsounaros I, et al. Degradation mechanisms of Pt/C fuel cell catalysts under simulated start–stop conditions. ACS Catal, 2012, 2(5): 832 doi: 10.1021/cs300024h
|
[8] |
Hartl K, Hanzlik M, Arenz M. IL-TEM investigations on the degradation mechanism of Pt/C electrocatalysts with different carbon supports. Energy Environ Sci, 2011, 4(1): 234 doi: 10.1039/C0EE00248H
|
[9] |
Zana A, Speder J, Roefzaad M, et al. Probing degradation by IL-TEM: The influence of stress test conditions on the degradation mechanism. J Electrochem Soc, 2013, 160(6): F608 doi: 10.1149/2.078306jes
|
[10] |
Speder J, Zana A, Spanos I, et al. Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts - The influence of the platinum to carbon ratio on the degradation rate. J Power Sources, 2014, 261: 14 doi: 10.1016/j.jpowsour.2014.03.039
|
[11] |
Hengge K, G?nsler T, Pizzutilo E, et al. Accelerated fuel cell tests of anodic Pt/Ru catalyst via identical location TEM: New aspects of degradation behavior. Int J Hydrog Energy, 2017, 42(40): 25359 doi: 10.1016/j.ijhydene.2017.08.108
|
[12] |
Arán-Ais R M, Yu Y C, Hovden R, et al. Identical location transmission electron microscopy imaging of site-selective Pt nanocatalysts: Electrochemical activation and surface disordering. J Am Chem Soc, 2015, 137(47): 14992 doi: 10.1021/jacs.5b09553
|
[13] |
Sakthivel M, Drillet J F. An extensive study about influence of the carbon support morphology on Pt activity and stability for oxygen reduction reaction. Appl Catal B:Environ, 2018, 231: 62 doi: 10.1016/j.apcatb.2018.02.050
|
[14] |
Schonvogel D, Hülstede J, Wagner P, et al. Stability of Pt nanoparticles on alternative carbon supports for oxygen reduction reaction. J Electrochem Soc, 2017, 164(9): F995 doi: 10.1149/2.1611709jes
|
[15] |
Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B:Environ, 2005, 56(1-2): 9 doi: 10.1016/j.apcatb.2004.06.021
|
[16] |
Inaba M, Jensen A W, Sievers G W, et al. Benchmarking high surface area electrocatalysts in a gas diffusion electrode: Measurement of oxygen reduction activities under realistic conditions. Energy Environ Sci, 2018, 11(4): 988 doi: 10.1039/C8EE00019K
|
[17] |
Nonoyama N, Okazaki S, Weber A Z, et al. Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells. J Electrochem Soc, 2011, 158(4): B416 doi: 10.1149/1.3546038
|
[18] |
Kongkanand A, Mathias M F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J Phys Chem Lett, 2016, 7(7): 1127 doi: 10.1021/acs.jpclett.6b00216
|
[19] |
Kocha S S, Zack J W, Alia S M, et al. Influence of ink composition on the electrochemical properties of Pt/C electrocatalysts. ECS Trans, 2013, 50(2): 1475 doi: 10.1149/05002.1475ecst
|
[20] |
Ohma A, Fushinobu K, Okazaki K. Influence of Nafion? film on oxygen reduction reaction and hydrogen peroxide formation on Pt electrode for proton exchange membrane fuel cell. Electrochimica Acta, 2010, 55(28): 8829 doi: 10.1016/j.electacta.2010.08.005
|
[21] |
Mayrhofer K J J, Ashton S J, Meier J C, et al. Non-destructive transmission electron microscopy study of catalyst degradation under electrochemical treatment. J Power Sources, 2008, 185(2): 734 doi: 10.1016/j.jpowsour.2008.08.003
|
[22] |
Schl?gl K, Hanzlik M, Arenz M. Comparative IL-TEM study concerning the degradation of carbon supported Pt-based electrocatalysts. J Electrochem Soc, 2012, 159(6): B677 doi: 10.1149/2.035206jes
|
[23] |
Yu Y C, Xin H L, Hovden R, et al. Three-dimensional tracking and visualization of hundreds of Pt?Co fuel cell nanocatalysts during electrochemical aging. Nano Lett, 2012, 12(9): 4417 doi: 10.1021/nl203920s
|
[24] |
Nikkuni F R, Dubau L, Ticianelli E A, et al. Accelerated degradation of Pt3Co/C and Pt/C electrocatalysts studied by identical-location transmission electron microscopy in polymer electrolyte environment. Appl Catal B:Environ, 2015, 176-177: 486 doi: 10.1016/j.apcatb.2015.04.035
|
[25] |
Vion-Dury B, Chatenet M, Guétaz L, et al. Determination of aging markers and their use as a tool to characterize Pt/C nanoparticles degradation mechanism in model PEMFC cathode environment. ECS Trans, 2019, 41(1): 697 doi: 10.1149/1.3635604
|