<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
PENG Ke-bo, GAO Li-kun, RAO Bing, GONG Zhi-hui, SHEN Hai-rong, GAO Guang-yan, HE Fei, ZHANG Ming. Research progress of non-cyanide gold leaching in gold mines[J]. Chinese Journal of Engineering, 2021, 43(7): 871-882. doi: 10.13374/j.issn2095-9389.2020.11.15.001
Citation: PENG Ke-bo, GAO Li-kun, RAO Bing, GONG Zhi-hui, SHEN Hai-rong, GAO Guang-yan, HE Fei, ZHANG Ming. Research progress of non-cyanide gold leaching in gold mines[J]. Chinese Journal of Engineering, 2021, 43(7): 871-882. doi: 10.13374/j.issn2095-9389.2020.11.15.001

Research progress of non-cyanide gold leaching in gold mines

doi: 10.13374/j.issn2095-9389.2020.11.15.001
More Information
  • Corresponding author: E-mail: 20030032@kust.edu.cn
  • Received Date: 2020-11-15
    Available Online: 2021-03-27
  • Publish Date: 2021-07-01
  • With the exhaustion of easy-to-treat gold ore resources, gold ores containing arsenic, carbon, high sulfur, and ultrafine particles have become the focus of gold mining. These difficult-to-treat gold ores have poor leaching effects through conventional cyanide leaching methods. The chemicals involved in the production process are highly toxic, which can endanger human health and seriously pollute the ecological environment. Some countries and regions have restricted or prohibited the use of cyanide to extract gold; besides, cyanide treatment contains copper, zinc, nickel, etc. When removing impurities from gold ores, these impurity metals will increase the consumption of cyanide and oxidant in the leaching system. At the same time, a film will be formed on the gold surface that hinders the leaching of gold in cyanide and reduces the leaching rate of gold. Gold-containing substances that are insoluble in the cyanide solution include antimony compounds, aurostibite, black bismuth gold ore, and gold-containing compounds formed during reduction roasting of lead, antimony, and arsenic minerals. Although these compounds are present in small quantities, they may account for a large proportion of the amount of gold lost during processing. Nevertheless, the cyanidation method is currently the main process for processing gold ores. Due to the existence of defects in the cyanidation method and the declining gold ore suitable for cyanide treatment, scholars from all over the world are studying alternatives for gold leaching to realize an efficient and environment-friendly recovery of gold in difficult-to-treat gold mines. This article summarized the methods of non-cyanide leaching of gold: thiosulfate method, glycine method, halide method, lime sulfur mixture method, iodination roasting process, biological oxidation thiourea leaching method, and non-aqueous gold leaching method. The gold leaching principles of seven non-cyanide gold leaching methods and the latest research progress in refractory gold mines were introduced. The development direction of non-cyanide leaching gold technology was prospected based on the problems of non-cyanide gold leaching methods such as expensive leaching agent, difficulty in recovering gold in leaching solution, complicated leaching system, unstable properties of leaching agent, and large consumption.

     

  • loading
  • [1]
    Reith F, Lengke M, Falconer D, et al. The geomicrobiology of gold. ISME J, 2007: 567
    [2]
    Yu S M, Yu T T, Song W P, et al. Ultrasound-assisted cyanide extraction of gold from gold concentrate at low temperature. Ultrason Sonochem, 2020, 64: 105039 doi: 10.1016/j.ultsonch.2020.105039
    [3]
    Guo X Y, Zhang L, Tian Q H, et al. Stepwise extraction of gold and silver from refractory gold concentrate calcine by thiourea. Hydrometallurgy, 2020, 194: 105330 doi: 10.1016/j.hydromet.2020.105330
    [4]
    Han J H, Li X A, Dai S J. Electrochemical influence of quartz on cyanide leaching of gold. Chem Phys Lett, 2020, 739: 136997 doi: 10.1016/j.cplett.2019.136997
    [5]
    Wang H J, Feng Y L, Li H R, et al. Simultaneous extraction of gold and zinc from refractory carbonaceous gold ore by chlorination roasting process. Trans Nonferrous Met Soc China, 2020, 30(4): 1111 doi: 10.1016/S1003-6326(20)65282-7
    [6]
    Yang T Z, Rao S, Liu W F, et al. A selective process for extracting antimony from refractory gold ore. Hydrometallurgy, 2017, 169: 571 doi: 10.1016/j.hydromet.2017.03.014
    [7]
    賈玉娟, 王曉輝, 程偉, 等. 難處理金礦非氰浸金研究進展. 工程科學學學報, 2019, 41(3):307

    Jia Y J, Wang X H, Cheng W, et al. Research progress on non-cyanide leaching of refractory gold ores. Chin J Eng, 2019, 41(3): 307
    [8]
    曹攀, 張霜華, 鄭雅杰. 難冶金精礦煙塵中鐵砷碳的脫除對氰化浸金的影響. 中國有色金屬學報, 2020, 30(5):1142 doi: 10.11817/j.ysxb.1004.0609.2020-39533

    Cao P, Zhang S H, Zheng Y J. Effects of iron, arsenic and carbon removal from a dust of refractory gold concentrates on cyanide leaching. Chin J Nonferrous Met, 2020, 30(5): 1142 doi: 10.11817/j.ysxb.1004.0609.2020-39533
    [9]
    任傳裕. 含砷難處理金礦生物預氧化渣酸性體系硫脲浸金機理及工藝研究[學位論文]. 北京: 北京有色金屬研究總院, 2020

    Ren C Y. Study on The Mechanism and Process of Gold Leaching by Thiourea in The Acid System of Biological Pre-Oxidation Residue of Refractory Gold Ore Containing Arsenic [Dissertation]. Beijing: General Research Institute for Nonferrous Metals, 2020
    [10]
    Wang G H, Liu X X, Wu Y H, et al. Bio-oxidation of a high-sulfur refractory gold concentrate with a two-stage chemical-biological approach. Hydrometallurgy, 2020, 197: 105421 doi: 10.1016/j.hydromet.2020.105421
    [11]
    Wang J, Wang W, Dong K W, et al. Research on leaching of carbonaceous gold ore with copper-ammonia-thiosulfate solutions. Miner Eng, 2019, 137: 232 doi: 10.1016/j.mineng.2019.04.013
    [12]
    Liu X L, Jiang T, Xu B, et al. Thiosulphate leaching of gold in the Cu?NH3? $ {\rm{S_2O_3^{2-}}} $?H2O system: An updated thermodynamic analysis using predominance area and species distribution diagrams. Miner Eng, 2020, 151: 106336 doi: 10.1016/j.mineng.2020.106336
    [13]
    Liu X L, Xu B, Yang Y B, et al. Effect of galena on thiosulfate leaching of gold. Hydrometallurgy, 2017, 171: 157 doi: 10.1016/j.hydromet.2017.05.011
    [14]
    Yang Y B, Gao W, Xu B, et al. Study on oxygen pressure thiosulfate leaching of gold without the catalysis of copper and ammonia. Hydrometallurgy, 2019, 187: 71 doi: 10.1016/j.hydromet.2019.05.006
    [15]
    Nie Y H, Yang L, Wang Q, et al. Connection between gold dissolution in thiosulfate leaching and Cu(II) complexes during the cathodic process. Electrochimica Acta, 2019, 328: 135079 doi: 10.1016/j.electacta.2019.135079
    [16]
    Xu B, Li K, Zhong Q, et al. Study on the oxygen pressure alkaline leaching of gold with generated thiosulfate from sulfur oxidation. Hydrometallurgy, 2018, 177: 178 doi: 10.1016/j.hydromet.2018.03.006
    [17]
    Jeffrey M I, Watling K, Hope G A, et al. Identification of surface species that inhibit and passivate thiosulfate leaching of gold. Miner Eng, 2008, 21(6): 443 doi: 10.1016/j.mineng.2008.01.006
    [18]
    Baron J Y, Mirza J, Nicol E A, et al. SERS and electrochemical studies of the gold-electrolyte interface under thiosulfate based leaching conditions. Electrochimica Acta, 2013, 111: 390 doi: 10.1016/j.electacta.2013.07.195
    [19]
    Xu B, Yang Y B, Li Q, et al. Effect of common associated sulfide minerals on thiosulfate leaching of gold and the role of humic acid additive. Hydrometallurgy, 2017, 171: 44 doi: 10.1016/j.hydromet.2017.04.006
    [20]
    Yu H, Zi F T, Hu X Z, et al. The copper-ethanediamine-thiosulphate leaching of gold ore containing limonite with cetyltrimethyl ammonium bromide as the synergist. Hydrometallurgy, 2014, 150: 178 doi: 10.1016/j.hydromet.2014.10.008
    [21]
    Chandra I, Jeffrey M I. A fundamental study of ferric oxalate for dissolving gold in thiosulfate solutions. Hydrometallurgy, 2005, 77(3? 4): 191
    [22]
    Heath J A, Jeffrey M I, Zhang H G, et al. Anaerobic thiosulfate leaching: Development of in situ gold leaching systems. Miner Eng, 2008, 21(6): 424 doi: 10.1016/j.mineng.2007.12.006
    [23]
    Xu B, Li K, Dong Z L, et al. Eco-friendly and economical gold extraction by nickel catalyzed ammoniacal thiosulfate leaching-resin adsorption recovery. J Cleaner Prod, 2019, 233: 1475 doi: 10.1016/j.jclepro.2019.06.182
    [24]
    Xu B, Yang Y B, Li Q, et al. Stage leaching of a complex polymetallic sulfide concentrate: Focus on the extraction of Ag and Au. Hydrometallurgy, 2016, 159: 87 doi: 10.1016/j.hydromet.2015.10.008
    [25]
    Xu B, Li K, Li Q, et al. Kinetic studies of gold leaching from a gold concentrate calcine by thiosulfate with cobalt-ammonia catalysis and gold recovery by resin adsorption from its pregnant solution. Sep Purif Technol, 2019, 213: 368 doi: 10.1016/j.seppur.2018.12.064
    [26]
    Liu X L, Xu B, Yang Y B, et al. Thermodynamic analysis of ammoniacal thiosulphate leaching of gold catalysed by Co(III)/Co(II) using Eh-pH and speciation diagrams. Hydrometallurgy, 2018, 178: 240 doi: 10.1016/j.hydromet.2018.05.014
    [27]
    Nie Y H, Yang L, Sun W, et al. Increase in gold dissolution in copper ammonia thiosulfate solution via cobalt surface modification. Hydrometallurgy, 2020, 197: 105473 doi: 10.1016/j.hydromet.2020.105473
    [28]
    Altinkaya P, Wang Z L, Korolev I, et al. Leaching and recovery of gold from ore in cyanide-free glycine media. Miner Eng, 2020, 158: 106610 doi: 10.1016/j.mineng.2020.106610
    [29]
    Oraby E A, Eksteen J J, Tanda B C. Gold and copper leaching from gold-copper ores and concentrates using a synergistic lixiviant mixture of glycine and cyanide. Hydrometallurgy, 2017, 169: 339 doi: 10.1016/j.hydromet.2017.02.019
    [30]
    Tauetsile P J, Oraby E A, Eksteen J J. Activated carbon adsorption of gold from cyanide-starved glycine solutions containing copper. Part 1: Isotherms. Sep Purif Technol, 2019, 211: 594 doi: 10.1016/j.seppur.2018.09.024
    [31]
    Feng D, van Deventer J S J. The role of amino acids in the thiosulphate leaching of gold. Miner Eng, 2011, 24(9): 1022 doi: 10.1016/j.mineng.2011.04.017
    [32]
    Groudev S N, Ivanov I M, Spasova I I, et al. Pilot scale microbial leaching of gold and silver from an oxide ore in elshitza mine//Minerals Bioprocessing II Conference. Bulgaria, 1995: 135
    [33]
    Oraby E A, Eksteen J J. The leaching of gold, silver and their alloys in alkaline glycine-peroxide solutions and their adsorption on carbon. Hydrometallurgy, 2015, 152: 199 doi: 10.1016/j.hydromet.2014.12.015
    [34]
    Wu H, Feng Y L, Huang W F, et al. The role of glycine in the ammonium thiocyanate leaching of gold. Hydrometallurgy, 2019, 185: 111 doi: 10.1016/j.hydromet.2019.01.019
    [35]
    Perea C G, Restrepo O J. Use of amino acids for gold dissolution. Hydrometallurgy, 2018, 177: 79 doi: 10.1016/j.hydromet.2018.03.002
    [36]
    Oraby E A, Eksteen J J, Karrech A, et al. Gold extraction from paleochannel ores using an aerated alkaline glycine lixiviant for consideration in heap and in situ leaching applications. Miner Eng, 2019, 138: 112 doi: 10.1016/j.mineng.2019.04.023
    [37]
    Adams M D. Chloride as an alternative lixiviant to cyanide for gold ores. Gold Ore Process, 2016: 525
    [38]
    Ahtiainen R, Lundstr?m M. Cyanide-free gold leaching in exceptionally mild chloride solutions. J Cleaner Prod, 2019, 234: 9 doi: 10.1016/j.jclepro.2019.06.197
    [39]
    王強. 微細粒包裹型碳質金礦的非氰提金試驗及機理研究[學位論文]. 昆明: 昆明理工大學, 2019

    Wang Q. Non-Cyanide Gold Extraction Experiment and Mechanism Study of Fine-Grained Carbonaceous Gold Deposit [Dissertation]. Kunming: Kunming University of Science and Technology, 2019
    [40]
    Diaz M A, Kelsall G H, Welham N J. Electrowinning coupled to gold leaching by electrogenerated chlorine: I. Au(III)–Au(I)/Au kinetics in aqueous Cl2/Cl? electrolytes. J Electroanal Chem, 1993, 361(1-2): 25 doi: 10.1016/0022-0728(93)87035-T
    [41]
    Seisko S, Aromaa J, Lundstr?m M. Effect of redox potential and OCP in ferric and cupric chloride leaching of gold. Hydrometallurgy, 2020, 195: 105374 doi: 10.1016/j.hydromet.2020.105374
    [42]
    Seisko S, Aromaa J, Lundstr?m M. Features affecting the cupric chloride leaching of gold. Miner Eng, 2019, 137: 94 doi: 10.1016/j.mineng.2019.03.030
    [43]
    Zhang N, Zhou Q B, Yin X, et al. Trace amounts of aqueous copper(II) chloride complexes in hypersaline solutions: Spectrophotometric and thermodynamic studies. J Solution Chem, 2014, 43(2): 326 doi: 10.1007/s10953-014-0129-8
    [44]
    Seisko S, Lampinen M, Aromaa J, et al. Kinetics and mechanisms of gold dissolution by ferric chloride leaching. Miner Eng, 2018, 115: 131 doi: 10.1016/j.mineng.2017.10.017
    [45]
    Lampinen M, Seisko S, Forsstr?m O, et al. Mechanism and kinetics of gold leaching by cupric chloride. Hydrometallurgy, 2017, 169: 103 doi: 10.1016/j.hydromet.2016.12.008
    [46]
    Bonsdorff R V, Aromaa J, O Forsén, et al. The rate of gold dissolution in concentrated cupric chloride solutions//The John E. Dutrizac International Symposium on Copper Hydrometallurgy. Toronto, 2007: 121
    [47]
    Baghalha M. Leaching of an oxide gold ore with chloride/hypochlorite solutions. Int J Miner Process, 2007, 82(4): 178 doi: 10.1016/j.minpro.2006.09.001
    [48]
    Nam K S, Jung B H, An J W, et al. Use of chloride-hypochlorite leachants to recover gold from tailing. Int J Miner Process, 2008, 86(1-4): 131
    [49]
    Hasab M G, Rashchi F, Raygan S. Simultaneous sulfide oxidation and gold leaching of a refractory gold concentrate by chloride-hypochlorite solution. Miner Eng, 2013, 50-51: 140
    [50]
    Hasab M G, Rashchi F, Raygan S. Chloride-hypochlorite leaching and hydrochloric acid washing in multi-stages for extraction of gold from a refractory concentrate. Hydrometallurgy, 2014, 142: 56 doi: 10.1016/j.hydromet.2013.11.015
    [51]
    Yanuar E, Suprapto. Leaching and adsorption of gold from lape-sumbawa rocks (Indonesia) by hypochlorite-chloride. Procedia Chem, 2015, 17: 59 doi: 10.1016/j.proche.2015.12.134
    [52]
    Pak K S, Zhang T A, Kim C S, et al. Research on chlorination leaching of pressure-oxidized refractory gold concentrate. Hydrometallurgy, 2020, 194: 105325 doi: 10.1016/j.hydromet.2020.105325
    [53]
    Sousa R, Futuro A, Fiúza A, et al. Bromine leaching as an alternative method for gold dissolution. Miner Eng, 2018, 118: 16 doi: 10.1016/j.mineng.2017.12.019
    [54]
    Wang Q, Hu X Z, Zi F T, et al. Extraction of gold from refractory gold ore using bromate and ferric chloride solution. Miner Eng, 2019, 136: 89 doi: 10.1016/j.mineng.2019.02.037
    [55]
    Chiu Y T, Lee P Y, Wi-Afedzi T, et al. Elimination of bromate from water using aluminum beverage cans via catalytic reduction and adsorption. J Colloid Interface Sci, 2018, 532: 416 doi: 10.1016/j.jcis.2018.07.112
    [56]
    Han P P, Xia Y. Thiol-functionalized metal-organic framework for highly efficient removal of bromate from water. J Environ Chem Eng, 2018, 6(2): 3384 doi: 10.1016/j.jece.2018.03.045
    [57]
    Vasudevan S. Studies relating to electrolytic preparation of potassium bromate. Ind Eng Chem Res, 2008, 47(5): 1743 doi: 10.1021/ie071554e
    [58]
    Davis A, Tran T. Gold dissolution in iodide electrolytes. Hydrometallurgy, 1991, 26(2): 163 doi: 10.1016/0304-386X(91)90029-L
    [59]
    宮麗媛, 李芬, 于洋, 等. 無污染碘化法提金工藝條件及再生研究. 環境科學與管理, 2011, 36(5):64 doi: 10.3969/j.issn.1673-1212.2011.05.016

    Gong L Y, Li F, Yu Y, et al. Pollution-free iodinated desugarization by gold process conditions and regeneration research. Environ Sci Manag, 2011, 36(5): 64 doi: 10.3969/j.issn.1673-1212.2011.05.016
    [60]
    徐渠, 陳東輝, 陳亮, 等. 碘化法從廢棄印刷線路板中浸取金. 有色金屬, 2010, 62(3):88

    Xu Q, Chen D H, Chen L, et al. Gold leaching from waste printed circuit board by iodine process. Nonferrous Met, 2010, 62(3): 88
    [61]
    Konyratbekova S S, Baikonurova A, Ussoltseva G A, et al. Thermodynamic and kinetic of iodine-iodide leaching in gold hydrometallurgy. Trans Nonferrous Met Soc China, 2015, 25(11): 3774 doi: 10.1016/S1003-6326(15)63980-2
    [62]
    Baghalha M. The leaching kinetics of an oxide gold ore with iodide/iodine solutions. Hydrometallurgy, 2012, 113-114: 42 doi: 10.1016/j.hydromet.2011.11.013
    [63]
    Altansukh B, Haga K, Ariunbolor N, et al. Leaching and adsorption of gold from waste printed circuit boards using iodine-iodide solution and activated carbon. Eng J, 2016, 20(4): 29 doi: 10.4186/ej.2016.20.4.29
    [64]
    Zhang X L, Sun C B, Xing Y, et al. Thermal decomposition behavior of pyrite in a microwave field and feasibility of gold leaching with generated elemental sulfur from the decomposition of gold-bearing sulfides. Hydrometallurgy, 2018, 180: 210 doi: 10.1016/j.hydromet.2018.07.012
    [65]
    Guo X Y, Qin H, Tian Q H, et al. The efficacy of a new iodination roasting technology to recover gold and silver from refractory gold tailing. J Cleaner Prod, 2020, 261: 121147 doi: 10.1016/j.jclepro.2020.121147
    [66]
    李騫, 沈煌, 張雁, 等. 硫脲浸金研究進展. 黃金, 2018, 39(1):66 doi: 10.11792/hj20180114

    Li Q, Shen H, Zhang Y, et al. Research progress of thiourea gold leaching process. Gold, 2018, 39(1): 66 doi: 10.11792/hj20180114
    [67]
    ?rgül S, Atalay ü. Reaction chemistry of gold leaching in thiourea solution for a turkish gold ore. Hydrometallurgy, 2002, 67(1-3): 71 doi: 10.1016/S0304-386X(02)00136-6
    [68]
    Li J S, Miller J D. Reaction kinetics of gold dissolution in acid thiourea solution using ferric sulfate as oxidant. Hydrometallurgy, 2007, 89(3-4): 279 doi: 10.1016/j.hydromet.2007.07.015
    [69]
    白安平. 堿性硫脲浸金影響因素及浸出機理研究[學位論文]. 北京: 北京有色金屬研究總院, 2017

    Bai A P. Research on Influencing Factors and Mechanism of Gold Leaching with Alkaline Thiourea Solution [Dissertation]. Beijing: Beijing General Research Institute of Nonferrous Metals, 2017
    [70]
    Zheng S, Wang Y Y, Chai L Y. Research status and prospect of gold leaching in alkaline thiourea solution. Miner Eng, 2006, 19(13): 1301 doi: 10.1016/j.mineng.2005.12.009
    [71]
    Guo Y J, Guo X, Wu H Y, et al. A novel bio-oxidation and two-step thiourea leaching method applied to a refractory gold concentrate. Hydrometallurgy, 2017, 171: 213 doi: 10.1016/j.hydromet.2017.05.023
    [72]
    Yoshimura A, Takai M, Matsuno Y. Novel process for recycling gold from secondary sources: Leaching of gold by dimethyl sulfoxide solutions containing copper bromide and precipitation with water. Hydrometallurgy, 2014, 149: 177 doi: 10.1016/j.hydromet.2014.08.003
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)

    Article views (1515) PDF downloads(188) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频