<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 5
May  2022
Turn off MathJax
Article Contents
SU San-qing, QIN Yan-long, WANG Wei, ZUO Fu-liang, DENG Rui-ze, LIU Xin-wei. Stress?magnetization of the state of flange damage to a bridge steel box beam based on magnetic memory detection[J]. Chinese Journal of Engineering, 2022, 44(5): 900-910. doi: 10.13374/j.issn2095-9389.2020.11.10.00214
Citation: SU San-qing, QIN Yan-long, WANG Wei, ZUO Fu-liang, DENG Rui-ze, LIU Xin-wei. Stress?magnetization of the state of flange damage to a bridge steel box beam based on magnetic memory detection[J]. Chinese Journal of Engineering, 2022, 44(5): 900-910. doi: 10.13374/j.issn2095-9389.2020.11.10.00214

Stress?magnetization of the state of flange damage to a bridge steel box beam based on magnetic memory detection

doi: 10.13374/j.issn2095-9389.2020.11.10.00214
More Information
  • Corresponding author: E-mail: sussqx@xauat.edu.cn
  • Received Date: 2020-11-10
    Available Online: 2021-11-23
  • Publish Date: 2022-05-25
  • Metal magnetic memory detection technology has been widely studied because it can identify damage to ferromagnetic components quickly and conveniently, and it is considered to have the ability to identify hidden damage. To promote the application of metal magnetic memory technology in the damage detection of a bridge steel box beam, a static bending test on the steel box beam of the bridge was performed, and the magnetic signal distribution of the upper flange with the most severe deformation was extracted. The quantitative relationship between the stress in the damaged region and magnetic signal or magnetic signal gradient was established, and an approach for characterizing the stress and damage state of the steel beam was proposed using the magnetic field gradient index. The results show that the magnetic signal curve of the upper flange is opposite to that of the stress change form, and the magnetic signal curve reverses to a negative value after entering the plastic state and increases with the stress change speed, so the component can be judged to enter the plastic state and soon be damaged. The maximum value of the magnetic field gradient curve appears in the position with the most severe damage, and with the increase in the load, the maximum value point of the magnetic gradient constantly moves to the middle of the steel beam; thus the early warning of the failure state can be conducted. The relationship curve between the magnetic field gradient and stress can obviously distinguish the entire stress process of the component, which includes four states: initial, yield, plasticity, and damage. The stress state and damage state of components can be characterized using the magnetic field gradient index. This study can provide a reference and basis for the application of metal magnetic memory detection technology in the quantitative assessment and early warning of the damage status of bridge steel box beams.

     

  • loading
  • [1]
    陳建波. 某高架橋改造工程鋼箱梁力學性能研究[學位論文]. 長沙: 中南大學, 2009

    Chen J B. Research on Mechanical Performance of Steel Box Girder of a Viaduct Reconstruction Project [Dissertation]. Changsha: Central South University, 2009
    [2]
    姚南. 在役橋梁鋼結構損傷檢測與安全評估相關方法的研究[學位論文]. 北京: 清華大學, 2009

    Yao N. Research on Relative Methods of Damage Inspecting and Safety Appraisal of Bridge Steel Structures in Service [Dissertation]. Beijing: Tsinghua University, 2009
    [3]
    徐濱士, 董麗虹. 再制造質量控制中的金屬磁記憶檢測技術. 北京: 國防工業出版社, 2015

    Xu B S, Dong L H. Metal Magnetic Memory Testing Method in Remanufacturing Quality Control. Beijing: National Defense Industry Press, 2015
    [4]
    時朋朋. 鐵磁材料應力和缺陷的微磁檢測定量化研究[學位論文]. 西安: 西安電子科技大學, 2017

    Shi P P. Quantitative Study of Micro-Magnetic Nondestructive Testing for Stress and Defect in Ferromagnetic Materials [Dissertation]. Xi'an: Xidian University, 2017
    [5]
    Bulte D P, Langman R A. Origins of the magnetomechanical effect. J Magn Magn Mater, 2002, 251(2): 229 doi: 10.1016/S0304-8853(02)00588-7
    [6]
    Dubov A A. A study of metal properties using the method of magnetic memory. Met Sci Heat Treat, 1997, 39(9): 401 doi: 10.1007/BF02469065
    [7]
    邢海燕, 徐敏強, 李建偉. 磁記憶檢測技術及工程應用. 北京: 中國石化出版社, 2011

    Xing H Y, Xu M Q, Li J W. Magnetic Memory Testing Technology and Engineering Application. Beijing: China Petrochemical Press, 2011
    [8]
    蘇三慶, 劉馨為, 王威, 等. 金屬磁記憶檢測技術研究新進展與關鍵問題. 工程科學學報, 2020, 42(12):1557

    Su S Q, Liu X W, Wang W, et al. Progress and key problems in the research on metal magnetic memory testing technology. Chin J Eng, 2020, 42(12): 1557
    [9]
    Shi P P, Su S Q, Chen Z M. Overview of researches on the nondestructive testing method of metal magnetic memory: Status and challenges. J Nondestruct Eval, 2020, 39(2): 1
    [10]
    錢正春, 黃海鴻, 韓剛, 等. 面向再制造的金屬磁記憶檢測技術研究綜述及工程應用案例. 機械工程學報, 2018, 54(17):235 doi: 10.3901/JME.2018.17.235

    Qian Z C, Huang H H, Han G, et al. Review on metal magnetic memory detection technology in remanufacturing and case study in engineering. J Mech Eng, 2018, 54(17): 235 doi: 10.3901/JME.2018.17.235
    [11]
    Su S Q, Ma X P, Wang W, et al. Stress-dependent magnetic charge model for micro-defects of steel wire based on the magnetic memory method. Res Nondestruct Eval, 2020, 31(1): 24 doi: 10.1080/09349847.2019.1617914
    [12]
    Ma X P, Su S Q, Wang W, et al. Damage location and numerical simulation for steel wire under torsion based on magnetic memory method. Int J Appl Electromagn Mech, 2019, 60(2): 223 doi: 10.3233/JAE-180075
    [13]
    蘇三慶, 王威. 建筑鋼結構磁記憶無損檢測. 北京: 科學出版社, 2019

    Su S Q, Wang W. Non-destructive Testing of Building Steel Structure with Magnetic Memory. Beijing: Science Press, 2019
    [14]
    Yi S C, Wang W, Su S Q. Bending experimental study on metal magnetic memory signal based on von Mises yield criterion. Int J Appl Electromagn Mech, 2015, 49(4): 547 doi: 10.3233/JAE-150067
    [15]
    蘇三慶, 秦彥龍, 王威, 等. 基于磁記憶的Q235b受彎鋼梁力磁效應數值模擬. 材料科學與工藝, 2020, 28(5):11

    Su S Q, Qin Y L, Wang W, et al. Numerical simulation of stress-magnetization effect for bending states of Q235b steel beam based on magnetic memory. Mater Sci Technol, 2020, 28(5): 11
    [16]
    姚凱. 基于金屬磁記憶法的鐵磁材料早期損傷檢測與評價的實驗研究[學位論文]. 北京: 北京交通大學, 2014

    Yao K. Experimental Research on Testing and Evaluation of Early Damage of Ferromagnetic Materials Based on Metal Magnetic Memory Method [Dissertation]. Beijing: Beijing Jiaotong University, 2014
    [17]
    任吉林, 林俊明. 金屬磁記憶檢測技術. 北京: 中國電力出版社, 2000

    Ren J L, Lin J M. Metal Magnetic Memory Detection Technology. Beijing: China Electric Power Press, 2000
    [18]
    Yao K, Wang Z D, Deng B, et al. Experimental research on metal magnetic memory method. Exp Mech, 2012, 52(3): 305 doi: 10.1007/s11340-011-9490-3
    [19]
    任吉林, 林俊明. 電磁無損檢測. 北京: 科學出版社, 2008

    Ren J L, Lin J M. Electromagnetic Nondestructive Testing. Beijing: Science Press, 2008
    [20]
    Jiles D. Introduction to Magnetism and Magnetic Materials. 3rd ed. London: Chapman and Hall Press, 2016
    [21]
    Jiles D C. Theory of the magnetomechanical effect. J Phys D Appl Phys, 1995, 28(8): 1537 doi: 10.1088/0022-3727/28/8/001
    [22]
    易術春, 王威, 蘇三慶, 等. 利用磁記憶信號特征參數表征拉伸應力狀態. 振動 測試與診斷, 2017, 37(4):667

    Yi S C, Wang W, Su S Q, et al. Using the characteristic parameters of magnetic memory signal to evaluate the tensile stress state. J Vib Meas Diagn, 2017, 37(4): 667
    [23]
    Jiles D C, Devine M K. Recent developments in modeling of the stress derivative of magnetization in ferromagnetic materials. J Appl Phys, 1994, 76(10): 7015 doi: 10.1063/1.358072
    [24]
    Sablik M J, Jiles D C. Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Trans Magn, 1993, 29(4): 2113 doi: 10.1109/20.221036
    [25]
    Yang E, Li L M, Chen X. Magnetic field aberration induced by cycle stress. J Magn Magn Mater, 2007, 312(1): 72 doi: 10.1016/j.jmmm.2006.09.019
    [26]
    Cullity B D, Graham C D. Introduction to Magnetic Materials. 2nd Ed. Hoboken: John Wiley Press, 2008
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(21)  / Tables(2)

    Article views (335) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频