<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 4
Mar.  2021
Turn off MathJax
Article Contents
ZHANG Er-jun, ZHOU Kang-gen, ZHANG Xue-kai, CHEN Wei, PENG Chang-hong. Experimental research on the comprehensive utilization of valuable components and centralized removal of harmful elements in waste acid[J]. Chinese Journal of Engineering, 2021, 43(4): 521-528. doi: 10.13374/j.issn2095-9389.2020.11.09.005
Citation: ZHANG Er-jun, ZHOU Kang-gen, ZHANG Xue-kai, CHEN Wei, PENG Chang-hong. Experimental research on the comprehensive utilization of valuable components and centralized removal of harmful elements in waste acid[J]. Chinese Journal of Engineering, 2021, 43(4): 521-528. doi: 10.13374/j.issn2095-9389.2020.11.09.005

Experimental research on the comprehensive utilization of valuable components and centralized removal of harmful elements in waste acid

doi: 10.13374/j.issn2095-9389.2020.11.09.005
More Information
  • Corresponding author: E-mail: Zhoukg63@163.com
  • Received Date: 2020-11-09
  • Publish Date: 2021-04-26
  • Currently in China, the waste acid generated from large-scale smelting plants is treated as “wastewater with high concentration of heavy metals”, which leads to high cost and many wastewater treatment residues (hazardous wastes). In this paper, based on the main components of waste acid and zinc oxide dust, the adoption of a cyclic leaching process was proposed, in which zinc oxide dust is leached by waste acid, thus enabling the recovery of copper (Cu) and zinc (Zn) from the circulating leaching solution and the central treatment of arsenic (As). The main factors affecting the first and second cyclic leaching processes were investigated, including the final pH, leaching temperature, and leaching time. After leaching was completed, several factors in the first and second As removal processes were investigated, including the H2O2 dosage, Na2S dosage, removal temperature, and removal time. The following optimal conditions were identified: the optimal final pH, leaching temperature, and leaching time for the first leaching are 1.5, 85 ℃, and 5 h, respectively. The optimal final pH and leaching temperature for the second leaching are 4 and 85 ℃, respectively. The optimal H2O2 dosage, removal temperature, and removal time for the first As removal are 0.067 mL per 1 mL of the secondary circulation leaching solution, 40 ℃, and 1.5 h, respectively. The optimal Na2S dosage for the second arsenic removal is 0.02 mL per 1 mL of the second circulation leaching solution, and the removal temperature and removal time were determined to be 35 ℃ and 2 h, respectively. Under these conditions, the concentrations of As, Cu, and Zn can be reduced to 3.26, 2.63, and 50.63 mg·L?1, respectively. The pH of the wastewater after processing was neutral, which meets the integrated wastewater discharge standard with minor treatment. In this way, valuable components in the waste acid can be comprehensively recovered, and the harmful element As centrally treated, thus reducing the production of hazardous wastes, saving energy, and reducing emissions.

     

  • loading
  • [1]
    楊源, 鄧志敢, 魏昶, 等. 利用濕法煉鋅赤鐵礦法沉鐵渣制備鐵紅工藝. 工程科學學報, 2020, 42(10):1325

    Yang Y, Deng Z G, We C, et al. Preparation of iron oxide red by sinking iron slag in zinc smelting hematite process. Chin J Eng, 2020, 42(10): 1325
    [2]
    尹升華, 王雷鳴, 吳愛祥, 等. 我國銅礦微生物浸出技術的研究進展. 工程科學學報, 2019, 41(2):143

    Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. Chin J Eng, 2019, 41(2): 143
    [3]
    馬忠旭. 大型有色金屬冶金廠重金屬廢水處理的運行與實踐. 世界有色金屬, 2016(19):67

    Ma Z X. Operation and practice of heavy metal waste water treatment in large scale nonferrous metal metallurgy factory. World Nonferrous Met, 2016(19): 67
    [4]
    陳維平, 李仲英, 邊可君, 等. 濕式提砷法在處理工業廢水及廢渣中的應用. 中國環境科學, 1999, 19(4):310

    Chen W P, Li Z Y, Bian K J, et al. Application of wet-method for extracting arsenic in treating industrial wastewater and residues. China Environ Sci, 1999, 19(4): 310
    [5]
    陳國強. 重金屬火法冶煉污酸廢水中有價金屬回收實驗研究. 中國礦業, 2018, 27(增刊2): 56

    Chen G Q. Experimental study on recovery of valuable metals in heavy metal smelting waste water. China Min Mag, 2018, 27(Suppl2): 56
    [6]
    Cai G Y, Zhu X, Li K Z, et al. Self-enhanced and efficient removal of arsenic from waste acid using magnetite as an in situ iron donator. Water Res, 2019, 157: 269 doi: 10.1016/j.watres.2019.03.067
    [7]
    曹俊雅, 張凱倫, 李媛媛, 等. 臭氧氧化合成臭蔥石除砷. 過程工程學報, 2018, 18(3):517

    Cao J Y, Zhang K L, Li Y Y, et al. Arsenic removal by scorodite synthesis using ozone oxidation. Chin J Process Eng, 2018, 18(3): 517
    [8]
    門玉, 李洪枚, Otgon Nasantogtokh, 等. 多級沉淀法處理含砷廢水. 過程工程學報, 2017, 17(2):259

    Men Y, Li H M, Otgon N, et al. Removal of arsenic from wastewater by multi-stage precipitation. Chin J Process Eng, 2017, 17(2): 259
    [9]
    郝峰焱, 祝星, 祁先進, 等. 鋼渣改性對污酸除砷的影響. 中國有色金屬學報, 2020, 30(7):1703

    Hao F Y, Zhu X, Qi X J, et al. Steel slag modification and its influence on arsenic removal from waste acid. Chin J Nonferrous Met, 2020, 30(7): 1703
    [10]
    楊桂芳, 范家驊. 含砷廢水的無害化處理. 現代冶金, 2019, 47(2):59

    Yang G F, Fan J H. The harmless treatment of arsenic-containing wastewater. Mod Metall, 2019, 47(2): 59
    [11]
    夏薪怡. 石灰–銅鹽–氧化法處理高濃度含砷廢水的實驗研究. 環保科技, 2018, 24(3):12

    Xia X Y. Experimental research of treatment of high concentration of trivalent as-containing wastewater by the catalytic oxidation-cupric salt. Environ Prot Technol, 2018, 24(3): 12
    [12]
    李維平, 南君芳, 張克榮, 等. 有色冶煉廢酸廢水減量化和資源化處理的研究. 硫酸工業, 2019(7):11

    Li W P, Nan J F, Zhang K R, et al. Study on reduction and resource treatment of waste acid wastewater from non-ferrous metallurgy. Sulphuric Acid Ind, 2019(7): 11
    [13]
    劉鵬程, 陽海棠, 陳藝鋒, 等. 預氧化-鈣鹽法處理含砷廢水試驗研究. 濕法冶金, 2017, 36(6):493

    Liu P C, Yang H T, Chen Y F, et al. Removal of arsenic in wastewater by peroxidation-calcium salt method. Hydrometall China, 2017, 36(6): 493
    [14]
    Xi Y H, Zou J T, Luo Y G, et al. Performance and mechanism of arsenic removal in waste acid by combination of CuSO4 and zero-valent iron. Chem Eng J, 2019, 375: 121928 doi: 10.1016/j.cej.2019.121928
    [15]
    王文凱, 閻莉, 段晉明, 等. 二氧化鈦濾柱對高砷污酸廢水的吸附去除. 環境工程學報, 2017, 11(3):1322

    Wang W K, Yan L, Duan J M, et al. Arsenite adsorption removal from acid wastewater using titanium dioxide adsorption filter column. Chin J Environ Eng, 2017, 11(3): 1322
    [16]
    Yang D Z, Sasaki A, Endo M. Reclamation of a waste arsenic-bearing gypsum as a soil conditioner via acid treatment and subsequent Fe(II) as stabilization. J Clean Prod, 2019(217): 22
    [17]
    Sullivan C, Tyrer M, Cheeseman C R, et al. Disposal of water treatment wastes containing arsenic — A review. Sci Total Environ, 2010, 408: 1770 doi: 10.1016/j.scitotenv.2010.01.010
    [18]
    Yang K, Qin W Q, Liu W. Extraction of elemental arsenic and regeneration of calcium oxide from waste calcium arsenate produced from wastewater treatment. Miner Eng, 2019, 134: 309 doi: 10.1016/j.mineng.2019.02.022
    [19]
    Mikula K, Izydorczyk G, Skrzypczak D, et al. Value-added strategies for the sustainable handling, disposal, or value-added use of copper smelter and refinery wastes. J Hazard Mater, 2021, 403: 123602 doi: 10.1016/j.jhazmat.2020.123602
    [20]
    舒波, 周尚, 張寶輝, 等. 有色冶煉含砷污酸處置及固砷技術進展. 礦產保護與利用, 2020, 40(3):12

    Shu B, Zhou S, Zhang B H, et al. Treatment of arsenic containing waste acid and development of arsenic fixation technology in nonferrous smelting. Conserv Util Miner Resour, 2020, 40(3): 12
    [21]
    曾濤, 鄧志敢, 張帆, 等. 采用鋅冶煉窯渣處理污酸回收銅鐵技術. 有色金屬工程, 2020, 10(7):61

    Zeng T, Deng Z G, Zhang F, et al. Recovery of copper and iron from zinc Waelz slag by waste acid. Nonferrous Met Eng, 2020, 10(7): 61
    [22]
    李永奎, 祝星, 祁先進, 等. 銅渣與含砷污酸反應行為及除砷機理. 中國環境科學, 2019, 39(10):4228

    Li Y K, Zhu X, Qi X J, et al. Reaction behavior of copper slag with waste acid and its arsenic removal mechanism. China Environ Sci, 2019, 39(10): 4228
    [23]
    周安梁, 李田玉, 李光明, 等. 白煙塵浸出液的銅砷回收試驗研究. 中國資源綜合利用, 2019, 37(12):13

    Zhou A L, Li T Y, Li G M, et al. The experiment study on recovery of copper and arsenic from the White fume lixivium. China Resour Comprehens Util, 2019, 37(12): 13
    [24]
    袁海濱. 高砷煙塵火法提取白砷實驗及熱力學研究. 云南冶金, 2011, 40(6):27

    Yuan H B. Thermodynamics research and experiment of white arsenic extraction from high arsenic fume by pyrometallurgy. Yunnan Metall, 2011, 40(6): 27
    [25]
    趙楊, 邢杰, 安俊菁, 等. 回轉窯還原焙燒鋅冶煉污泥與煙塵回收研究. 有色金屬(冶煉部分), 2017(2):10

    Zhao Y, Xing J, An J Q, et al. Study on reduction roasting of zinc – smelting – sludge in rotary kiln and dust recycling. Nonferrous Met (Extract Metall), 2017(2): 10
    [26]
    邸久海, 潘聰超, 龐建明, 等. 直接還原回轉窯協同處理含鋅固廢技術及應用. 中國冶金, 2019, 29(10):71

    Di J H, Pan C C, Pang J M, et al. Technology and application of cooperative disposal of zinc solid waste by direct reduction rotary kiln. China Metall, 2019, 29(10): 71
    [27]
    黎氏瓊春, 劉超,巨少華, 等. 鐵礬渣微波硫酸化焙燒水浸液的深度除鐵. 工程科學學報, 2015, 37(9):1138

    Le T Q X, Liu C, Ju S H, et al. Deep removal of iron from jarosite residue after acid mixing, microwave roasting and water leaching. Chin J Eng, 2015, 37(9): 1138
    [28]
    李旭光, 譚永仁, 梁鐸強, 等. 從硫化鋅精礦中直接回收砷. 有色金屬(冶煉部分), 2012(1):13

    Li X G, Tan Y R, Liang D Q, et al. Arsenic direct recovery from arsenic-bearing zinc sulfide concentrates. Nonferrous Met (Extract Metall), 2012(1): 13
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views (1848) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频