Citation: | GU Qing, LIU Li, BAI Guo-xing, MENG Yu. Optimal turning trajectory planning of an LHD based on a bidimensional search[J]. Chinese Journal of Engineering, 2021, 43(2): 289-298. doi: 10.13374/j.issn2095-9389.2020.11.09.002 |
[1] |
M?kel? H, Lehtinen H, Rintanen K, et al. Navigation system for LHD machines. IFAC Proc Vol, 1995, 28(11): 295
|
[2] |
Roberts J M, Duff E S, Corke P I. Reactive navigation and opportunistic localization for autonomous underground mining vehicles. Inf Sci, 2002, 145(1-2): 127 doi: 10.1016/S0020-0255(02)00227-X
|
[3] |
Dragt B J, Camisani-Calzolari F R, Craig I K. An overview of the automation of load-haul-dump vehicles in an underground mining environment. IFAC Proc Vol, 2005, 38(1): 37
|
[4] |
Larsson J, Broxvall M, Saffiotti A. A navigation system for automated loaders in underground mines // Proceedings of the 5th International Conference on Field and Service Robotics (FSR-2005). Port Douglas, 2005: 1
|
[5] |
石峰, 顧洪樞, 戰凱, 等. 地下鏟運機自主行駛與避障控制方法研究. 有色金屬(礦山部分), 2015, 67(5):68
Shi F, Gu H S, Zhan K, et al. Study on the control method of underground loader autonomous driving and obstacle avoidance. Nonferrous Met (Mine Sect)
|
[6] |
楊超, 陳樹新, 劉立, 等. 反應式導航在地下自主行駛鏟運機中的應用. 煤炭學報, 2011, 36(11):1943
Yang C, Chen S X, Liu L, et al. Reactive navigation for underground autonomous scraper. J China Coal Soc, 2011, 36(11): 1943
|
[7] |
龍智卓, 戰凱, 顧洪樞, 等. 基于改進模糊PID算法的智能鏟運機自主行駛控制方法. 有色金屬(礦山部分), 2015, 67(5):76
Long Z Z, Zhan K, Gu H S, et al. The control method based on improved fuzzy-PID algorithm for the autonomous driving of intelligent LHD. Nonferrous Met (Mine Sect)
|
[8] |
Andersson U, Mrozek K, Hyypp? K, et al. Path design and control algorithms for articulated mobile robots // Field and Service Robotics. London, 1998: 390
|
[9] |
龍智卓, 戰凱, 顧洪樞, 等. 基于改進蟻群算法的智能鏟運機全局路徑規劃. 有色金屬(礦山部分), 2013, 65(2):6
Long Z Z, Zhan K, Gu H S, et al. Global path planning of intelligent load-haul-dump based on improved ant colony algorithm. Nonferrous Met (Mine Sect)
|
[10] |
石峰, 顧洪樞, 戰凱, 等. 自主鏟運機的定位導航和控制策略基本思路. 有色金屬(礦山部分), 2009, 61(2):65
Shi F, Gu H S, Zhan K, et al. The basic method study on the location-navigation and control strategy for the independent LHD unit. Nonferrous Met (Mine Sect)
|
[11] |
姜辰, 王浩文, 李健珂, 等. 無人直升機自抗擾自適應軌跡跟蹤混合控制. 工程科學學報, 2017, 39(11):1743
Jiang C, Wang H W, Li J K, et al. Trajectory-tracking hybrid controller based on ADRC and adaptive control for unmanned helicopters. Chin J Eng, 2017, 39(11): 1743
|
[12] |
Invernizzi D, Lovera M, Zaccarian L. Dynamic attitude planning for trajectory tracking in thrust-vectoring UAVs. IEEE Trans Autom Control, 2020, 65(1): 453 doi: 10.1109/TAC.2019.2919660
|
[13] |
Ziegler J, Bender P, Dang T, et al. Trajectory planning for Bertha — A local, continuous method // 2014 IEEE Intelligent Vehicles Symposium Proceedings. Dearborn, 2014: 450
|
[14] |
Ziegler J, Bender P, Schreiber M, et al. Making bertha drive—an autonomous journey on a historic route. IEEE Intell Transp Syst Mag, 2014, 6(2): 8
|
[15] |
Liu C L, Lin C Y, Tomizuka M. The convex feasible set algorithm for real time optimization in motion planning. SIAM J Control Optim, 2018, 56(4): 2712
|
[16] |
Liu C L, Lin C Y, Wang Y Z, et al. Convex feasible set algorithm for constrained trajectory smoothing // 2017 American Control Conference (ACC). Seattle, 2017: 4177
|
[17] |
Liu C L, Tomizuka M. Real time trajectory optimization for nonlinear robotic systems: Relaxation and convexification. Syst Control Lett, 2017, 108: 56 doi: 10.1016/j.sysconle.2017.08.004
|
[18] |
Chen J Y, Zhan W, Tomizuka M. Autonomous driving motion planning with constrained iterative LQR. IEEE Trans Intell Veh, 2019, 4(2): 244 doi: 10.1109/TIV.2019.2904385
|
[19] |
Li B, Wang K X, Shao Z J. Time-optimal maneuver planning in automatic parallel parking using a simultaneous dynamic optimization approach. IEEE Trans Intell Transp Syst, 2016, 17(11): 3263 doi: 10.1109/TITS.2016.2546386
|
[20] |
Huang Y J, Wang H, Khajepour A, et al. A novel local motion planning framework for autonomous vehicles based on resistance network and model predictive control. IEEE Trans Veh Technol, 2020, 69(1): 55 doi: 10.1109/TVT.2019.2945934
|
[21] |
Huang Y J, Ding H T, Zhang Y B, et al. A motion planning and tracking framework for autonomous vehicles based on artificial potential field elaborated resistance network approach. IEEE Trans Ind Electron, 2020, 67(2): 1376 doi: 10.1109/TIE.2019.2898599
|
[22] |
McNaughton M, Urmson C, Dolan J M, et al. Motion planning for autonomous driving with a conformal spatiotemporal lattice // 2011 IEEE International Conference on Robotics and Automation. Shanghai, 2011: 4889
|
[23] |
Li X H, Sun Z P, Cao D P, et al. Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles. Mech Syst Signal Process, 2017, 87: 118 doi: 10.1016/j.ymssp.2015.10.021
|
[24] |
Li X H, Sun Z P, Cao D P, et al. Real-time trajectory planning for autonomous urban driving: framework, algorithms, and verifications. IEEE/ASME Trans Mechatron, 2016, 21(2): 740 doi: 10.1109/TMECH.2015.2493980
|
[25] |
Xu W D, Wei J Q, Dolan J M, et al. A real-time motion planner with trajectory optimization for autonomous vehicles // 2012 IEEE International Conference on Robotics and Automation. Saint Paul, 2012: 2061
|
[26] |
Lim W, Lee S, Sunwoo M, et al. Hierarchical trajectory planning of an autonomous car based on the integration of a sampling and an optimization method. IEEE Trans Intell Transp Syst, 2018, 19(2): 613
|
[27] |
Werling M, Ziegler J, Kammel S, et al. Optimal trajectory generation for dynamic street scenarios in a Frenét Frame // 2010 IEEE International Conference on Robotics and Automation. Anchorage, 2010: 987
|
[28] |
Werling M, Kammel S, Ziegler J, et al. Optimal trajectories for time-critical street scenarios using discretized terminal manifolds. Int J Rob Res, 2012, 31(3): 346 doi: 10.1177/0278364911423042
|
[29] |
Fan H Y, Zhu F, Liu C C, et al. Baidu Apollo EM Motion Planner [J/OL]. arXiv preprint (2018-07-20) [2020-11-08]. https://arxiv.org/pdf/1807.08048.pdf
|
[30] |
Nilsson J, Br?nnstr?m M, Fredriksson J, et al. Longitudinal and lateral control for automated yielding maneuvers. IEEE Trans Intell Transp Syst, 2016, 17(5): 1404 doi: 10.1109/TITS.2015.2504718
|
[31] |
Gu Q, Liu L, Bai G X, et al. Longitudinal and lateral trajectory planning for the typical duty cycle of autonomous load haul dump. IEEE Access, 2019, 7: 126679
|
[32] |
Zheng H Y, Zhou J, Shao Q, et al. Investigation of a longitudinal and lateral lane-changing motion planning model for intelligent vehicles in dynamical driving environments. IEEE Access, 2019, 7: 44783 doi: 10.1109/ACCESS.2019.2909273
|