Citation: | XING Hai-yan, WANG Song-hong-ze, YI Ming, YANG Jian-ping, ZHU Kong-yang, LIU Chao. Metal magnetic memory quantitative inversion model based on IPSO-GRU algorithm for detecting submarine pipeline defect[J]. Chinese Journal of Engineering, 2022, 44(5): 911-919. doi: 10.13374/j.issn2095-9389.2020.11.06.001 |
[1] |
王紅紅, 劉國恒. 中國海油海底管道事故統計及分析. 中國海上油氣, 2017, 29(5):157
Wang H H, Liu G H. Statistics and analysis of subsea pipeline accidents of CNOOC. China Offshore Oil Gas, 2017, 29(5): 157
|
[2] |
Dubov A A. A study of metal properties using the method of magnetic memory. Met Sci Heat Treat, 1997, 39(9): 401 doi: 10.1007/BF02469065
|
[3] |
蘇三慶, 劉馨為, 王威, 等. 金屬磁記憶檢測技術研究新進展與關鍵問題. 工程科學學報, 2020, 42(12):1557
Su S Q, Liu X W, Wang W, et al. Progress and key problems in the research on metal magnetic memory testing technology. Chin J Eng, 2020, 42(12): 1557
|
[4] |
閔希華, 楊理踐, 王國慶, 等. 長輸油氣管道弱磁應力內檢測技術. 機械工程學報, 2017, 53(12):19 doi: 10.3901/JME.2017.12.019
Min X H, Yang L J, Wang G Q, et al. Weak magnetism stress internal testing technology of the long distance oil-gas pipeline. J Mech Eng, 2017, 53(12): 19 doi: 10.3901/JME.2017.12.019
|
[5] |
劉斌, 曹陽, 王締, 等. 基于LMTO算法磁記憶屈服信號的定量化分析. 儀器儀表學報, 2017, 38(6):1413 doi: 10.3969/j.issn.0254-3087.2017.06.012
Liu B, Cao Y, Wang D, et al. Quantitative analysis of the magnetic memory yielding signal characteristics based on the LMTO algorithm. Chin J Sci Instrum, 2017, 38(6): 1413 doi: 10.3969/j.issn.0254-3087.2017.06.012
|
[6] |
Venkatachalapathi N, basha S M J, Raju G J, et al. Characterization of fatigued steel states with metal magnetic memory method. Mater Today:Proc, 2018, 5(2): 8645 doi: 10.1016/j.matpr.2018.04.002
|
[7] |
焦江娜. 基于磁記憶的金屬管道損傷檢測及評估方法研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2015
Jiao J N. Damage Testing of the Metal Pipeline Based on Metal Magnetic Memory and Research on Evaluation Methed [Dissertation]. Harbin: Harbin Institute of Technology, 2015
|
[8] |
時朋朋, 郝帥. 磁記憶檢測的力磁耦合型磁偶極子理論及解析解. 物理學報, 2021, 70(3):105
Shi P P, Hao S. Analytical solution of magneto-mechanical magnetic dipole model for metal magnetic memory method. Acta Phys Sin, 2021, 70(3): 105
|
[9] |
包勝, 趙政燁, 金鵬飛, 等. 鐵磁性材料缺陷處的磁記憶信號特征分析. 工程力學, 2020, 37(增刊1): 371
Bao S, Zhao Z Y, Jin P F, et al. Study on the characteristics of magnetic memory signals at ferromagnetic material defects. Eng Mech, 2020, 37(Sup 1): 371
|
[10] |
Xu K S, Yang K, Liu J, et al. Study on metal magnetic memory signal of buried defect in fracture process. J Magn Magn Mater, 2020, 498: 166139 doi: 10.1016/j.jmmm.2019.166139
|
[11] |
Xu K S, Feng M G, Qiu X X. Distinguishing welding defects from the stress concentration zone using metal magnetic memory field parameters. Trans Indian Inst Met, 2019, 72(2): 343 doi: 10.1007/s12666-018-1485-7
|
[12] |
Xu K S, Liu J W, Yang K, et al. Effect of applied load and thermal treatment on the magnetic memory signal of defect-bearing Q345R steel samples. J Magn Magn Mater, 2021, 539: 168366 doi: 10.1016/j.jmmm.2021.168366
|
[13] |
李立剛, 萬勇, 王宇, 等. 基于支持向量機和磁記憶技術的管道缺陷深度的定量化反演研究. 腐蝕與防護, 2020, 41(1):29 doi: 10.11973/fsyfh-202001006
Li L G, Wan Y, Wang Y, et al. Quantitative inversion of pipeline defect depth based on support vector machine and magnetic memory technology. Corros Prot, 2020, 41(1): 29 doi: 10.11973/fsyfh-202001006
|
[14] |
萬勇, 王宇, 楊勇, 等. 管道缺陷類型多特征量閾值識別方法. 油氣儲運, 2020, 39(3):268
Wan Y, Wang Y, Yang Y, et al. Multi-characteristic threshold identification method for pipeline defect types. Oil Gas Storage Transp, 2020, 39(3): 268
|
[15] |
易方, 李著信, 呂宏慶, 等. 基于模糊核支持向量機的管道磁記憶檢測缺陷識別. 石油學報, 2010, 31(5):863 doi: 10.7623/syxb201005030
Yi F, Li Z X, Lü H Q, et al. Defect recognition by metal magnetic memory detection of pipelines based on the fuzzy kernel function SVM. Acta Petrolei Sin, 2010, 31(5): 863 doi: 10.7623/syxb201005030
|
[16] |
El-Abbasy M S, Senouci A, Zayed T, et al. A condition assessment model for oil and gas pipelines using integrated simulation and analytic network process. Struct Infrastructure Eng, 2015, 11(3): 263 doi: 10.1080/15732479.2013.873471
|
[17] |
王帥, 黃海鴻, 韓剛, 等. 基于PCA與GA-BP神經網絡的磁記憶信號定量評價. 電子測量與儀器學報, 2018, 32(10):190
Wang S, Huang H H, Han G, et al. Quantitative evaluation of magnetic memory signal based on PCA & GA-BP neural network. J Electron Meas Instrum, 2018, 32(10): 190
|
[18] |
駱正山, 趙樂新, 王小完. 基于動態貝葉斯網絡的海底管道點蝕疲勞損傷失效模型研究. 表面技術, 2020, 49(1):269
Luo Z S, Zhao L X, Wang X W. Failure model for pitting fatigue damaged pipeline of subsea based on dynamic Bayesian network. Surf Technol, 2020, 49(1): 269
|
[19] |
駱正山, 秦越, 張新生, 等. 基于LASSO-WOA-LSSVM的海洋管線外腐蝕速率預測. 表面技術, 2021(5):245
Luo Z S, Qin Y, Zhang X S, et al. Prediction of external corrosion rate of marine pipelines based on LASSO-WOA-LSSVM. Surface Technology, 2021(5): 245
|
[20] |
邢海燕, 陳思雨, 李思岐, 等. 基于粒子群最大似然估計的焊縫早期隱性損傷磁記憶精確定位模型. 工程科學學報, 2017, 39(10):1559
Xing H Y, Chen S Y, Li S Q, et al. MMM accurate location model of early hidden damage in welded joints based on PSO and MLE. Chin J Eng, 2017, 39(10): 1559
|
[21] |
邢海燕, 陳玉環, 李雪峰, 等. 基于動態免疫模糊聚類的金屬焊縫缺陷等級磁記憶識別模型. 儀器儀表學報, 2019, 40(11):225
Xing H Y, Chen Y H, Li X F, et al. Magnetic memory identification model of mental weld defect levels based on dynamic immune fuzzy clustering. Chin J Sci Instrum, 2019, 40(11): 225
|
[22] |
Zhou W, Fan J C, Liu X Y, et al. Metal magnetic memory testing of the drilling riser pipeline steel based on pulsating-impact-fatigue test. Mater Sci Forum, 2020, 975: 15 doi: 10.4028/www.scientific.net/MSF.975.15
|
[23] |
Zhao B X, Yao K, Wu L B, et al. Application of metal magnetic memory testing technology to the detection of stress corrosion defect. Appl Sci, 2020, 10(20): 7083 doi: 10.3390/app10207083
|
[24] |
Cho K, Merrirnboer B V, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J/OL]. arXiv. org online (2014-6-3) [2021-5-1]. https://arxiv.org/abs/1406.1078
|
[25] |
Kennedy J, Eberhart R. Particle swarm optimization // Proceedings of ICNN'95-IEEE International Conference on Neural Networks. Perth, 1995: 1942
|