Citation: | WANG Hong-jiang, WANG Xiao-lin, ZHANG Xi, WU Ai-xiang, TIAN Zhi-gang, DU Xiang-hong. Deep cone dynamic flocculation thickening of ultrafine full tailings[J]. Chinese Journal of Engineering, 2022, 44(2): 163-169. doi: 10.13374/j.issn2095-9389.2020.11.05.005 |
[1] |
侯賀子, 李翠平, 王少勇, 等. 尾礦濃密中泥層沉降速度變化及顆粒沉降特性. 中南大學學報(自然科學版), 2019, 50(6):1428 doi: 10.11817/j.issn.1672-7207.2019.06.022
Hou H Z, Li C P, Wang S Y, et al. Settling velocity variation of mud layer and particle settling characteristics in thickening of tailings. J Central South Univ Sci Technol, 2019, 50(6): 1428 doi: 10.11817/j.issn.1672-7207.2019.06.022
|
[2] |
王昆, 楊鵬, Karen Hudson-Edwards, 等. 尾礦庫潰壩災害防控現狀及發展. 工程科學學報, 2018, 40(5):526
Wang K, Yang P, Hudsonedwards K, et al. Status and development for the prevention and management of tailings dam failure accidents. Chin J Eng, 2018, 40(5): 526
|
[3] |
阮竹恩, 李翠平, 鐘媛. 全尾膏體制備過程中尾礦顆粒運移行為研究進展與趨勢. 金屬礦山, 2014(12):13
Ruan Z E, Li C P, Zhong Y. Development progress and trend of whole-tailings particles’ migration behavior during preparation of whole-tailings paste. Met Mine, 2014(12): 13
|
[4] |
吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517
|
[5] |
周茜, 劉娟紅, 吳愛祥, 等. 濃密增效劑對尾砂料漿濃密性能的影響及機理. 工程科學學報, 2019, 41(11):1405
Zhou Q, Liu J H, Wu A X, et al. Effect and mechanism of synergist on tailings slurry thickening performance. Chin J Eng, 2019, 41(11): 1405
|
[6] |
Tan C K, Setiawan R, Bao J, et al. Studies on parameter estimation and model predictive control of paste thickeners. J Process Control, 2015, 28: 1 doi: 10.1016/j.jprocont.2015.02.002
|
[7] |
李公成, 王洪江, 焦華喆, 等. 穩態濃密機全尾砂脫水規律物理模擬. 中國有色金屬學報, 2019, 29(3):649
Li G C, Wang H J, Jiao H Z, et al. Physical simulation of dewaterability law of unclassified tailings in steady state thickener. Chin J Nonferrous Met, 2019, 29(3): 649
|
[8] |
阮竹恩, 吳愛祥, 王建棟, 等. 基于絮團弦長測定的全尾砂絮凝沉降行為. 工程科學學報, 2020, 42(8):980
Ruan Z E, Wu A X, Wang J D, et al. Flocculation and settling behavior of unclassified tailings based on measurement of floc chord length. Chin J Eng, 2020, 42(8): 980
|
[9] |
吳愛祥, 楊瑩, 王貽明, 等. 深錐濃密機底流濃度模型及動態壓密機理分析. 工程科學學報, 2018, 40(2):152
Wu A X, Yang Y, Wang Y M, et al. Mathematical modelling of underflow concentration in a deep cone thickener and analysis of the dynamic compaction mechanism. Chin J Eng, 2018, 40(2): 152
|
[10] |
Yin S H, Shao Y J, Wu A X, et al. A systematic review of paste technology in metal mines for cleaner production in China. J Clean Prod, 2020, 247: 119590 doi: 10.1016/j.jclepro.2019.119590
|
[11] |
吳愛祥, 阮竹恩, 王建棟, 等. 基于超級絮凝的超細尾砂絮凝行為優化. 工程科學學報, 2019, 41(8):981
Wu A X, Ruan Z E, Wang J D, et al. Optimizing the flocculation behavior of ultrafine tailings by ultra-flocculation. Chin J Eng, 2019, 41(8): 981
|
[12] |
Li S, Wang X M, Zhang Q L. Dynamic experiments on flocculation and sedimentation of argillized ultrafine tailings using fly-ash-based magnetic coagulant. Trans Nonferrous Met Soc China, 2016, 26(7): 1975 doi: 10.1016/S1003-6326(16)64308-X
|
[13] |
李立濤, 楊志強, 王忠紅, 等. 鞍鋼礦山超細鐵礦全尾砂漿絮凝沉降特性試驗. 礦業研究與開發, 2017, 37(3):19
Li L T, Yang Z Q, Wang Z H, et al. Experiments on the flocculation and settling characteristics of the slurry with extra-fine iron total tailings in angang mine. Min Res Dev, 2017, 37(3): 19
|
[14] |
卞繼偉, 王新民, 肖崇春. 全尾砂動態絮凝沉降試驗研究. 中南大學學報(自然科學版), 2017, 48(12):3278 doi: 10.11817/j.issn.1672-7207.2017.12.019
Bian J W, Wang X M, Xiao C C. Experimental study on dynamic flocculating sedimentation of unclassified tailings. J Central South Univ Sci Technol, 2017, 48(12): 3278 doi: 10.11817/j.issn.1672-7207.2017.12.019
|
[15] |
Li C H, Shi Y Q, Liu P, et al. Analysis of the sedimentation characteristics of ultrafine tailings based on an orthogonal experiment. Adv Mater Sci Eng, 2019, 2019: 1
|
[16] |
史秀志, 陳飛, 盧二偉, 等. 超細粒級浸出渣絮凝沉降特性試驗研究. 礦冶工程, 2018, 38(2):1 doi: 10.3969/j.issn.0253-6099.2018.02.001
Shi X Z, Chen F, Lu E W, et al. Experimental study on sedimentation characteristics of ultrafine leach residue after flocculation. Min Metall Eng, 2018, 38(2): 1 doi: 10.3969/j.issn.0253-6099.2018.02.001
|
[17] |
高維鴻, 王洪江, 陳輝, 等. 尾礦動態濃密過程中底流濃度主要影響因素研究. 金屬礦山, 2016(11):102 doi: 10.3969/j.issn.1001-1250.2016.11.022
Gao W H, Wang H J, Chen H, et al. Study on main factors of underflow concentration in the dynamics thickening process of tailings. Met Mine, 2016(11): 102 doi: 10.3969/j.issn.1001-1250.2016.11.022
|
[18] |
周旭, 金曉剛, 劉培正, 等. 基于動態濃密試驗的深錐濃密機底流濃度預測模型. 金屬礦山, 2017(12):39 doi: 10.3969/j.issn.1001-1250.2017.12.008
Zhou X, Jin X G, Liu P Z, et al. Prediction model for underflow concentration of deep cone thickener based on dynamic thickening experimentation. Met Mine, 2017(12): 39 doi: 10.3969/j.issn.1001-1250.2017.12.008
|
[19] |
Zhu L Y, Lyu W S, Yang P, et al. Effect of ultrasound on the flocculation-sedimentation and thickening of unclassified tailings. Ultrason Sonochemistry, 2020, 66: 104984 doi: 10.1016/j.ultsonch.2020.104984
|
[20] |
Jiao H Z, Wang S F, Yang Y X, et al. Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill. J Clean Prod, 2020, 245: 118882 doi: 10.1016/j.jclepro.2019.118882
|
[21] |
吳愛祥, 艾純明, 王貽明, 等. 泵送劑改善膏體流變性能試驗及機理分析. 中南大學學報(自然科學版), 2016, 47(8):2752 doi: 10.11817/j.issn.1672-7207.2016.08.029
Wu A X, Ai C M, Wang Y M, et al. Test and mechanism analysis on improving rheological property of paste with pumping agent. J Central South Univ Sci Technol, 2016, 47(8): 2752 doi: 10.11817/j.issn.1672-7207.2016.08.029
|
[22] |
賀平, 林共進, 劉民千, 等. 均勻設計理論與應用. 中國科學:數學, 2020, 50(5):561 doi: 10.1360/SSM-2020-0065
He P, Lin G J, Liu M Q, et al. Theory and application of uniform designs. Sci Sin Math, 2020, 50(5): 561 doi: 10.1360/SSM-2020-0065
|
[23] |
Qi C C, Fourie A. Cemented paste backfill for mineral tailings management: Review and future perspectives. Miner Eng, 2019, 144: 106025 doi: 10.1016/j.mineng.2019.106025
|
[24] |
焦華喆, 王樹飛, 吳愛祥, 等. 膏體濃密床層孔隙結構剪切演化與連通機理. 中南大學學報(自然科學版), 2019, 50(5):1173 doi: 10.11817/j.issn.1672-7207.2019.05.021
Jiao H Z, Wang S F, Wu A X, et al. Shear evolution and connected mechanism of pore structure in thickening bed of paste. J Central South Univ Sci Technol, 2019, 50(5): 1173 doi: 10.11817/j.issn.1672-7207.2019.05.021
|
[25] |
Gladman B R, Rudman M, Scales P J. The effect of shear on gravity thickening: Pilot scale modelling. Chem Eng Sci, 2010, 65(14): 4293 doi: 10.1016/j.ces.2010.04.010
|
[26] |
王洪江, 王勇, 吳愛祥, 等. 細粒全尾動態壓密與靜態壓密機理. 北京科技大學學報, 2013, 35(5):566
Wang H J, Wang Y, Wu A X, et al. Dynamic compaction and static compaction mechanism of fine unclassified tailings. J Univ Sci Technol Beijing, 2013, 35(5): 566
|
[27] |
楊瑩, 吳愛祥, 王洪江, 等. 基于泥層高度的耙架扭矩力學模型及機理分析. 中南大學學報(自然科學版), 2019, 50(1):165 doi: 10.11817/j.issn.1672-7207.2019.01.021
Yang Y, Wu A X, Wang H J, et al. Mechanics model of rake torque based on sludge height and its mechanism analysis. J Central South Univ Sci Technol, 2019, 50(1): 165 doi: 10.11817/j.issn.1672-7207.2019.01.021
|