Citation: | DAI Hui-xin, TANG Dong-dong, WANG Fei-wang, XIE Pei, ZHAO Ming-zhu. Application status of discrete element method in grinding equipment research and parameter optimization[J]. Chinese Journal of Engineering, 2022, 44(3): 319-327. doi: 10.13374/j.issn2095-9389.2020.11.05.004 |
[1] |
韓清林, 田秋娟, 田磊. 離散元方法在球磨機中的應用現狀. 工程機械文摘, 2011(1):36
Han Q L, Tian Q J, Tian L. Application status of discrete element method in ball mill. Constr Mach Dig, 2011(1): 36
|
[2] |
田秋娟. 基于離散元方法的大型球磨機工作性能研究[學位論文]. 長春: 吉林大學, 2011
Tian Q J. Study on the Working Performances of Large Tumbling Ball Mill Based on the Discrete Element Method [Dissertation]. Changchun: Jilin University, 2011
|
[3] |
桑艷偉, 張國旺, 肖驍, 等. 離散元法在磨礦設備中的應用現狀. 礦冶工程, 2016, 36(增刊): 242
Sang Y W, Zhang G W, Xiao X, et al. Application status of discrete element method in grinding equipment. Min Metall Eng, 2016, 36(suppl): 242
|
[4] |
高強. 基于離散元法的攪拌球磨機磨礦分析與研究[學位論文]. 昆明: 昆明理工大學, 2016
Gao Q. Analysis Grinding of Horizontal Stirred Mill Based on Distinct Element Method [Dissertation]. Kunming: Kunming University of Science and Technology, 2016
|
[5] |
田瑞霞, 焦紅光, 白璟宇. 離散元法在礦物加工工程中的應用現狀. 選煤技術, 2012(1):72 doi: 10.3969/j.issn.1001-3571.2012.01.020
Tian R X, Jiao H G, Bai J Y. An introduction of distinct element method and its application in mineral processing engineering. Coal Prep Technol, 2012(1): 72 doi: 10.3969/j.issn.1001-3571.2012.01.020
|
[6] |
Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: Theoretical developments. Chem Eng Sci, 2007, 62(13): 3378 doi: 10.1016/j.ces.2006.12.089
|
[7] |
Weerasekara N S, Powell M S, Cleary P W, et al. The contribution of DEM to the science of comminution. Powder Technol, 2013, 248: 3 doi: 10.1016/j.powtec.2013.05.032
|
[8] |
方自強, 吳洪亮, 周享楠. 球磨機DEM仿真中接觸模型的精準性分析. 機械, 2019, 46(2):17
Fang Z Q, Wu H L, Zhou X N. Analysis for the mechanical characteristics of contact models in the DEM simulation of a ball mill. Machinery, 2019, 46(2): 17
|
[9] |
Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol, 1992, 71(3): 239 doi: 10.1016/0032-5910(92)88030-L
|
[10] |
Mindlin R D. Compliance of elastic bodies in contact. J Appl Mech, 1949, 16(3): 259 doi: 10.1115/1.4009973
|
[11] |
Cleary P W. Predicting charge motion, power draw, segregation and wear in ball mills using discrete element methods. Miner Eng, 1998, 11(11): 1061 doi: 10.1016/S0892-6875(98)00093-4
|
[12] |
Di Renzo A, di Maio F P. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem Eng Sci, 2004, 59(3): 525 doi: 10.1016/j.ces.2003.09.037
|
[13] |
Potyondy D O, Cundall P A. A bonded-particle model for rock. Int J Rock Mech Min Sci, 2004, 41(8): 1329 doi: 10.1016/j.ijrmms.2004.09.011
|
[14] |
Mishra B K, Rajamani R K. The discrete element method for the simulation of ball mills. Appl Math Model, 1992, 16(11): 598 doi: 10.1016/0307-904X(92)90035-2
|
[15] |
Mishra B K, Rajamani R K. Simulation of charge motion in ball mills. Part 1: Experimental verifications. Int J Miner Process, 1994, 40(3-4): 171 doi: 10.1016/0301-7516(94)90042-6
|
[16] |
Cleary P W. Recent advances in DEM modelling of tumbling mills. Miner Eng, 2001, 14(10): 1295 doi: 10.1016/S0892-6875(01)00145-5
|
[17] |
Cleary P W, Sinnott M D, Morrison R D. DEM prediction of particle flows in grinding processes. Int J Numer Meth Fluids, 2008, 58(3): 319 doi: 10.1002/fld.1728
|
[18] |
Weerasekara N S, Liu L X, Powell M S. Estimating energy in grinding using DEM modelling. Miner Eng, 2016, 85: 23 doi: 10.1016/j.mineng.2015.10.013
|
[19] |
Jiang S Q, Ye Y X, Tan Y Q, et al. Discrete element simulation of particle motion in ball mills based on similarity. Powder Technol, 2018, 335: 91 doi: 10.1016/j.powtec.2018.05.012
|
[20] |
Radziszewski P, Tarasiewicz S. Simulation of ball charge and liner wear. Wear, 1993, 169(1): 77 doi: 10.1016/0043-1648(93)90393-Z
|
[21] |
Bian X L, Wang G Q, Wang H D, et al. Effect of lifters and mill speed on particle behaviour, torque, and power consumption of a tumbling ball mill: Experimental study and DEM simulation. Miner Eng, 2017, 105: 22 doi: 10.1016/j.mineng.2016.12.014
|
[22] |
Peng Y X, Li T Q, Zhu Z C, et al. Discrete element method simulations of load behavior with mono-sized iron ore particles in a ball mill. Adv Mech Eng, 2017, 9(5): 1
|
[23] |
Kalala J T, Breetzke M, Moys M H. Study of the influence of liner wear on the load behaviour of an industrial dry tumbling mill using the discrete element method (DEM). Int J Miner Process, 2008, 86(1-4): 33 doi: 10.1016/j.minpro.2007.10.001
|
[24] |
Cleary P W, Owen P, Hoyer D I, et al. Prediction of mill liner shape evolution and changing operational performance during the liner life cycle: Case study of a Hicom mill. Int J Numer Meth Eng, 2010, 81(9): 1157 doi: 10.1002/nme.2721
|
[25] |
Kiangi K, Potapov A, Moys M. DEM validation of media shape effects on the load behaviour and power in a dry pilot mill. Miner Eng, 2013, 46-47: 52 doi: 10.1016/j.mineng.2013.03.025
|
[26] |
姚福善. 大型塔式磨機在金精礦氰化細磨中的應用. 黃金科學技術, 2014, 22(3):82 doi: 10.11872/j.issn.1005-2518.2014.03.082
Yao F S. Application of large tower mill in cyanide fine grinding of gold concentrate. Gold Sci Technol, 2014, 22(3): 82 doi: 10.11872/j.issn.1005-2518.2014.03.082
|
[27] |
Morrison R D, Cleary P W, Sinnott M D. Using DEM to compare the energy efficiency of pilot scale ball and tower mills. Miner Eng, 2009, 22(7-8): 665 doi: 10.1016/j.mineng.2009.01.016
|
[28] |
王鑫, 肖正明, 龍穩. 基于離散元法的塔磨機介質運動仿真分析. 礦山機械, 2015, 43(7):74
Wang X, Xiao Z M, Long W. Simulation and analysis on media movement in tower mill based on DEM. Min Process Equip, 2015, 43(7): 74
|
[29] |
Sinnott M D, Cleary P W, Morrison R D. Is media shape important for grinding performance in stirred mills? Miner Eng, 2011, 24(2): 138
|
[30] |
Sinnott M, Cleary P W, Morrison R. Analysis of stirred mill performance using DEM simulation: Part 1— Media motion, energy consumption and collisional environment. Miner Eng, 2006, 19(15): 1537 doi: 10.1016/j.mineng.2006.08.012
|
[31] |
Cleary P W, Sinnott M, Morrison R. Analysis of stirred mill performance using DEM simulation: Part 2— Coherent flow structures, liner stress and wear, mixing and transport. Miner Eng, 2006, 19(15): 1551 doi: 10.1016/j.mineng.2006.08.013
|
[32] |
任廷志, 李卓, 劉長遠, 等. 基于離散元法的塔磨機數值模擬分析. 中國粉體技術, 2016, 22(4):88
Ren T Z, Li Z, Liu C Y, et al. Simulation of tower mill analysis based on discrete element method. China Powder Sci Technol, 2016, 22(4): 88
|
[33] |
肖正明, 王鑫, 伍星, 等. 塔磨機運行參數優化匹配的仿真分析與試驗研究. 中國機械工程, 2016, 27(4):483 doi: 10.3969/j.issn.1004-132X.2016.04.011
Xiao Z M, Wang X, Wu X, et al. Simulation analyses and experimental investigation on optimum matching of operating parameters of tower mill. China Mech Eng, 2016, 27(4): 483 doi: 10.3969/j.issn.1004-132X.2016.04.011
|
[34] |
Sinnott M, Cleary P W, Morrison R D. Slurry flow in a tower mill. Miner Eng, 2011, 24(2): 152 doi: 10.1016/j.mineng.2010.11.002
|
[35] |
Yang R Y, Jayasundara C T, Yu A B, et al. DEM simulation of the flow of grinding media in IsaMill. Miner Eng, 2006, 19(10): 984 doi: 10.1016/j.mineng.2006.05.002
|
[36] |
Jayasundara C T, Yang R Y, Yu A B, et al. Discrete particle simulation of particle flow in the IsaMill process. Ind Eng Chem Res, 2006, 45(18): 6349 doi: 10.1021/ie060474s
|
[37] |
Jayasundara C T, Yang R Y, Yu A B, et al. Discrete particle simulation of particle flow in IsaMill—Effect of grinding medium properties. Chem Eng J, 2008, 135(1-2): 103 doi: 10.1016/j.cej.2007.04.001
|
[38] |
Jayasundara C T, Yang R Y, Yu A B, et al. Effects of disc rotation speed and media loading on particle flow and grinding performance in a horizontal stirred mill. Int J Miner Process, 2010, 96(1-4): 27 doi: 10.1016/j.minpro.2010.07.006
|
[39] |
Jayasundara C T, Yang R Y, Yu A B, et al. Prediction of the disc wear in a model IsaMill and its effect on the flow of grinding media. Miner Eng, 2011, 24(14): 1586 doi: 10.1016/j.mineng.2011.08.011
|
[40] |
Cleary P W, Sinnott M D, Pereira G G. Computational prediction of performance for a full scale Isamill: Part 1—Media motion and energy utilisation in a dry mill. Miner Eng, 2015, 79: 220 doi: 10.1016/j.mineng.2015.04.005
|
[41] |
Cleary P W, Sinnott M D. Computational prediction of performance for a full scale Isamill: Part 2—Wet models of charge and slurry transport. Miner Eng, 2015, 79: 239 doi: 10.1016/j.mineng.2015.04.013
|
[42] |
Jayasundara C T, Yang R Y, Guo B Y, et al. Effect of slurry properties on particle motion in IsaMills. Miner Eng, 2009, 22(11): 886 doi: 10.1016/j.mineng.2009.04.009
|
[43] |
Cho H, Lee H, Lee Y. Some breakage characteristics of ultra-fine wet grinding with a centrifugal mill. Int J Miner Process, 2006, 78(4): 250 doi: 10.1016/j.minpro.2005.11.005
|
[44] |
Bradley A A, Lloyd P J D, Stanton K H. The balancing of a centrifugal mill. J South Afr Inst Min Metall, 1983, 83: 229
|
[45] |
Lee H, Cho H, Kwon J. Using the discrete element method to analyze the breakage rate in a centrifugal/vibration mill. Powder Technol, 2010, 198(3): 364 doi: 10.1016/j.powtec.2009.12.001
|
[46] |
陳懿. 臥式離心滾磨介質運動分析及數值模擬[學位論文]. 昆明: 昆明理工大學, 2017
Chen Y. Motion Analysis of Medium and Numerical Simulation of Horizontal Centrifugal Barrel Finishing [Dissertation]. Kunming: Kunming University of Science and Technology, 2017
|
[47] |
Khanal M, Morrison R. Discrete element method study of abrasion. Miner Eng, 2008, 21(11): 751 doi: 10.1016/j.mineng.2008.06.008
|
[48] |
Antony S J, Kruyt N P. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media. Phys Rev E, 2009, 79: art. No. 031308 doi: 10.1103/PhysRevE.79.031308
|
[49] |
Khanal M, Jayasundara C T. Role of particle stiffness and inter-particle sliding friction in milling of particles. Particuology, 2014, 16: 54 doi: 10.1016/j.partic.2014.04.003
|
[50] |
Cleary P W. Large scale industrial DEM modelling. Eng Comput, 2004, 21(2/3/4): 169 doi: 10.1108/02644400410519730
|
[51] |
Cleary P W. Industrial particle flow modelling using discrete element method. Eng Comput, 2009, 26(6): 698 doi: 10.1108/02644400910975487
|
[52] |
Cleary P W. The effect of particle shape on simple shear flows. Powder Technol, 2008, 179(3): 144 doi: 10.1016/j.powtec.2007.06.018
|
[53] |
Delaney G W, Cleary P W, Morrison R D, et al. Predicting breakage and the evolution of rock size and shape distributions in Ag and SAG mills using DEM. Miner Eng, 2013, 50-51: 132 doi: 10.1016/j.mineng.2013.01.007
|
[54] |
Cleary P W, Morrison R D. Comminution mechanisms, particle shape evolution and collision energy partitioning in tumbling mills. Miner Eng, 2016, 86: 75 doi: 10.1016/j.mineng.2015.12.006
|
[55] |
Cleary P W, Delaney G W, Sinnott M D, et al. Inclusion of incremental damage breakage of particles and slurry rheology into a particle scale multiphase model of a SAG mill. Miner Eng, 2018, 128: 92 doi: 10.1016/j.mineng.2018.08.026
|
[56] |
Cleary P W, Owen P. Effect of particle shape on structure of the charge and nature of energy utilisation in a SAG mill. Miner Eng, 2019, 132: 48 doi: 10.1016/j.mineng.2018.12.006
|
[57] |
杜強. 基于離散元的大型半自磨機筒體襯板磨損分析. 礦山機械, 2015, 43(1):62
Du Q. Wearing analysis of shell liner in large SAG mill based on DEM. Min Process Equip, 2015, 43(1): 62
|
[58] |
蔡改貧, 祁步春, 肖賢煌, 等. 半自磨機磨礦效果的數值模擬及實驗研究. 河南理工大學學報(自然科學版), 2017, 36(2):89
Cai G P, Qi B C, Xiao X H, et al. Numerical simulation and experiment research of grinding efficiency of SAG. J Henan Polytech Univ Nat Sci, 2017, 36(2): 89
|