Citation: | ZHANG Peng, LI Su-qin, GUO Peng-hui, ZHAO Xin, ZHAO Ze-kun. Synthesis of a hierarchical ZSM-5 zeolite from iron-ore tailings by a two-step method[J]. Chinese Journal of Engineering, 2022, 44(5): 894-899. doi: 10.13374/j.issn2095-9389.2020.11.05.002 |
[1] |
閆啟平. 我國鐵礦尾礦渣粉開發利用之研究. 中國廢鋼鐵, 2014(3):33
Yan Q P. Research on development and utilization of iron ore tailings slag powder in my country. Iron Steel Scrap China, 2014(3): 33
|
[2] |
Osinubi K J, Yohanna P, Eberemu A O. Cement modification of tropical black clay using iron ore tailings as admixture. Transp Geotech, 2015, 5: 35 doi: 10.1016/j.trgeo.2015.10.001
|
[3] |
McDonald J E D, Roache S C, Kawatra S K. Repurposing mine tailings: Cold bonding of siliceous iron ore tailings. Miner Metall Process, 2016, 33(1): 47
|
[4] |
Sirkeci A A, Gül A, Bulut G, et al. Recovery of Co, Ni, and Cu from the tailings of divrigi iron ore concentrator. Miner Process Extr Metall Rev, 2006, 27(2): 131 doi: 10.1080/08827500600563343
|
[5] |
Wang C L, Ni W, Zhang S Q, et al. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings. Constr Build Mater, 2016, 104: 109 doi: 10.1016/j.conbuildmat.2015.12.041
|
[6] |
Jin Y Y, Sun Q, Qi G D, et al. Solvent-free synthesis of silicoaluminophosphate zeolites. Angew Chem Int Ed, 2013, 52(35): 9172 doi: 10.1002/anie.201302672
|
[7] |
Zhang P, Li S Q, Guo P H, et al. Synthesis of ZSM-5 microspheres made of nanocrystals from iron ore tailings by the solid-phase conversion method. Langmuir, 2020, 36(22): 6160 doi: 10.1021/acs.langmuir.0c00570
|
[8] |
Yang G, Deng Y X, Ding H, et al. A facile approach to synthesize MCM-41 mesoporous materials from iron ore tailing: Influence of the synthesis conditions on the structural properties. Appl Clay Sci, 2015, 111: 61 doi: 10.1016/j.clay.2015.04.005
|
[9] |
Liu X F, Zeng S J, Wang R W, et al. Sustainable synthesis of hierarchically porous silicalite-1 zeolite by steam-assisted crystallization of solid raw materials without secondary templates. Chem Res Chin Univ, 2018, 34(3): 350 doi: 10.1007/s40242-018-7400-2
|
[10] |
郭肖, 林少穎, 秦愷, 等. 納米沸石的模板可控去除及分子擴散限制. 高等學校化學學報, 2015, 36(4):713
Guo X, Lin S Y, Qin K, et al. Controllable detemplation of nanozeolites and research of molecular diffusing limitation. Chem J Chin Univ, 2015, 36(4): 713
|
[11] |
Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids: A view from a historical perspective. Int Rev Phys Chem, 2000, 19(1): 45 doi: 10.1080/014423500229855
|
[12] |
Mianowski A, Bigda R. The Kissinger law and isokinetic effect: Part II. Experimental analysis. J Therm Anal Calorim, 2004, 75(1): 355 doi: 10.1023/B:JTAN.0000017356.72106.d9
|
[13] |
Zhu Q, Kondo J N, Setoyama T, et al. Activation of hydrocarbons on acidic zeolites: Superior selectivity of methylation of ethene with methanol to propene on weakly acidic catalysts. Chem Commun (Camb)
|
[14] |
Ding J, Fan S Y, Chen P J, et al. Vapor-phase transport synthesis of microfibrous-structured SS-fiber@ZSM-5 catalyst with improved selectivity and stability for methanol-to-propylene. Catal Sci Technol, 2017, 7(10): 2087 doi: 10.1039/C7CY00283A
|
[15] |
Wodarz S, Slaby N A, Zimmermann M C, et al. Shaped hierarchical H-ZSM-5 catalysts for the conversion of dimethyl ether to gasoline. Ind Eng Chem Res, 2020, 59(40): 17689 doi: 10.1021/acs.iecr.9b06256
|
[16] |
Jiang X, Nie X W, Guo X W, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem Rev, 2020, 120(15): 7984 doi: 10.1021/acs.chemrev.9b00723
|
[17] |
Wu Z J, Zhao K Q, Zhang Y, et al. Synthesis and consequence of aggregated nanosized ZSM-5 zeolite crystals for methanol to propylene reaction. Ind Eng Chem Res, 2019, 58(25): 10737 doi: 10.1021/acs.iecr.9b00502
|
[18] |
Zhang K, Fernandez S, O’Brien J T, et al. Organotemplate-free synthesis of hierarchical beta zeolites. Catal Today, 2018, 316: 26 doi: 10.1016/j.cattod.2017.11.033
|
[19] |
Emdadi L, Tran D T, Schulman E, et al. Synthesis of hierarchical lamellar MFI zeolites with sequential intergrowth influenced by synthetic gel composition. Microporous Mesoporous Mater, 2019, 275: 31 doi: 10.1016/j.micromeso.2018.08.007
|
[20] |
Zhang Q, Hu S, Zhang L L, et al. Facile fabrication of mesopore-containing ZSM-5 zeolite from spent zeolite catalyst for methanol to propylene reaction. Green Chem, 2014, 16(1): 77 doi: 10.1039/C3GC41327F
|
[21] |
Ge T, Hua Z, He X, et al. On the mesoporogen-free synthesis of single-crystalline hierarchically structured ZSM-5 zeolites in a quasi-solid-state system. Chemistry, 2016, 22(23): 7895 doi: 10.1002/chem.201504813
|
[22] |
Li C L, Wang Y Q, Shi B F, et al. Synthesis of hierarchical MFI zeolite microspheres with stacking nanocrystals. Microporous Mesoporous Mater, 2009, 117(1-2): 104 doi: 10.1016/j.micromeso.2008.06.017
|
[23] |
Feng A H, Yu Y, Mi L, et al. Synthesis and characterization of hierarchical Y zeolites using NH4HF2 as dealumination agent. Microporous Mesoporous Mater, 2019, 280: 211 doi: 10.1016/j.micromeso.2019.01.039
|
[24] |
Yue M B, Sun L B, Zhuang T T, et al. Directly transforming as-synthesized MCM-41 to mesoporous MFI zeolite. J Mater Chem, 2008, 18(17): 2044 doi: 10.1039/b717634a
|
[25] |
陳航榕, 周曉霞, 施劍林. 多級孔沸石的孔結構調控合成及其催化應用研究進展. 無機材料學報, 2018, 33(2):113 doi: 10.15541/jim20170255
Chen H R, Zhou X X, Shi J L. Research progress on hierarchically porous zeolites: Structural control, synthesis and catalytic applications. J Inorg Mater, 2018, 33(2): 113 doi: 10.15541/jim20170255
|
[26] |
Zhou J, Hua Z L, Liu Z C, et al. Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties. ACS Catal, 2011, 1(4): 287 doi: 10.1021/cs1000976
|
[27] |
Xue T, Li S S, Wu H H, et al. Eco-friendly and cost-effective synthesis of ZSM-5 aggregates with hierarchical porosity. Ind Eng Chem Res, 2017, 56(46): 13535 doi: 10.1021/acs.iecr.7b02551
|
[28] |
Farinmade A, Ajumobi O, Yu L, et al. A one-step facile encapsulation of zeolite microcrystallites in ordered mesoporous microspheres. Ind Eng Chem Res, 2020, 59(31): 13923 doi: 10.1021/acs.iecr.0c02054
|