Citation: | YANG Yi, HE Ya-peng, ZHANG Pan-pan, GUO Zhong-cheng, HANG Hui. Research progress on coating modification of lithium-rich cathode materials for lithium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(3): 367-379. doi: 10.13374/j.issn2095-9389.2020.11.04.003 |
[1] |
Goodenough J B. Energy storage materials: A perspective. Energy Storage Mater, 2015, 1: 158 doi: 10.1016/j.ensm.2015.07.001
|
[2] |
Kumar S, Nayak P K, Hariharan K S, et al. Temperature and potential dependence electrochemical impedance studies of LiMn2O4. J Appl Electrochem, 2014, 44(1): 61 doi: 10.1007/s10800-013-0601-y
|
[3] |
Thomas M G S R, David W I F, Goodenough J B, et al. Synthesis and structural characterization of the normal spinel Li[Ni2]O4. Mater Res Bull, 1985, 20(10): 1137 doi: 10.1016/0025-5408(85)90087-X
|
[4] |
Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2 (0<x<?1): A new cathode material for batteries of high energy density. Mater Res Bull, 1980, 15(6): 783 doi: 10.1016/0025-5408(80)90012-4
|
[5] |
Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 1997, 144(4): 1188 doi: 10.1149/1.1837571
|
[6] |
Numata K, Sakaki C, Yamanaka S. Synthesis of solid solutions in a system of LiCoO2–Li2MnO3 for cathode materials of secondary lithium batteries. Chem Lett, 1997, 26(8): 725 doi: 10.1246/cl.1997.725
|
[7] |
Numata K, Sakaki C, Yamanaka S. Synthesis and characterization of layer structured solid solutions in the system of LiCoO2–Li2MnO3. Solid State Ionics, 1999, 117(3-4): 257 doi: 10.1016/S0167-2738(98)00417-2
|
[8] |
Lu Z H, MacNeil D D, Dahn J R. Layered cathode materials Li[NixLi(1/3–2x/3)Mn(2/3–x/3)]O2 for lithium-ion batteries. Electrochem Solid-State Lett, 2001, 4(11): A191 doi: 10.1149/1.1407994
|
[9] |
Thackeray M M, Johnson C S, Vaughey J T, et al. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem, 2005, 15(23): 2257 doi: 10.1039/b417616m
|
[10] |
Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem, 2007, 17(30): 3112 doi: 10.1039/b702425h
|
[11] |
Johnson C S, Li N C, Lefief C, et al. Anomalous capacity and cycling stability of xLi2MnO3·(1?x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50℃. Electrochem Commun, 2007, 9(4): 787 doi: 10.1016/j.elecom.2006.11.006
|
[12] |
Wang Z, Yin Y P, Ren Y, et al. High performance lithium-manganese-rich cathode material with reduced impurities. Nano Energy, 2017, 31: 247 doi: 10.1016/j.nanoen.2016.10.014
|
[13] |
Chong S K, Wu Y F, Chen Y Z, et al. A strategy of constructing spherical core-shell structure of Li1.2Ni0.2Mn0.6O2@Li1.2Ni0.4Mn0.4O2 cathode material for high-performance lithium-ion batteries. J Power Sources, 2017, 356: 153
|
[14] |
Nayak P K, Erickson E M, Schipper F, et al. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv Energy Mater, 2018, 8(8): 1702397 doi: 10.1002/aenm.201702397
|
[15] |
Zuo Y, Li B, Jiang N, et al. A high-capacity O2–Type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv Mater, 2018, 30(16): e1707255 doi: 10.1002/adma.201707255
|
[16] |
Zheng J M, Yan P F, Estevez L, et al. Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries. Nano Energy, 2018, 49: 538
|
[17] |
Assat G, Tarascon J M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat Energy, 2018, 3(5): 373 doi: 10.1038/s41560-018-0097-0
|
[18] |
Yang C, Gong Z L, Zhao W G, et al. Synthesis and electrochemical performance of lithium rich cathode materials xLi3NbO4·(1–x)LiMO2 (M=Mn, Co; 0<x<1) for Li-ion batteries. Acta Chim Sinica, 2017, 75(2): 212 doi: 10.6023/A16050240
|
[19] |
Gauthier M, Carney T J, Grimaud A, et al. Electrode-electrolyte interface in Li-ion batteries: Current understanding and new insights. J Phys Chem Lett, 2015, 6(22): 4653 doi: 10.1021/acs.jpclett.5b01727
|
[20] |
Yan P F, Nie A M, Zheng J M, et al. Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li1.2Ni0.2Mn0.6O2 cathode material for lithium ion batteries. Nano Lett, 2015, 15(1): 514
|
[21] |
Xu B, Fell C R, Chi M F, et al. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ Sci, 2011, 4(6): 2223 doi: 10.1039/c1ee01131f
|
[22] |
Oh P, Ko M, Myeong S, et al. A novel surface treatment method and new insight into discharge voltage deterioration for high-performance 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 cathode materials. Adv Energy Mater, 2014, 4(16): 1400631
|
[23] |
Pang S L, Xu K J, Wang Y G, et al. Enhanced electrochemical performance of Li-rich layered cathode materials via chemical activation of Li2MnO3 component and formation of spinel/carbon coating layer. J Power Sources, 2017, 365: 68 doi: 10.1016/j.jpowsour.2017.08.077
|
[24] |
Chen D R, Zheng F, Li L, et al. Effect of Li3PO4 coating of layered lithium-rich oxide on electrochemical performance. J Power Sources, 2017, 341: 147 doi: 10.1016/j.jpowsour.2016.11.020
|
[25] |
Zheng F H, Ou X, Pan Q C, et al. Nanoscale gadolinium doped ceria (GDC) surface modification of Li-rich layered oxide as a high performance cathode material for lithium ion batteries. Chem Eng J, 2018, 334: 497 doi: 10.1016/j.cej.2017.10.050
|
[26] |
Wen X F, Liang K, Tian L Y, et al. Al2O3 coating on Li1.256Ni0.198Co0.082Mn0.689O2.25 with spinel-structure interface layer for superior performance lithium ion batteries. Electrochimica Acta, 2018, 260: 549
|
[27] |
Seteni B, Rapulenyane N, Ngila J C, et al. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries. J Power Sources, 2017, 353: 210
|
[28] |
Wang D D, Zhang X P, Xiao R J, et al. Electrochemical performance of Li-rich Li[Li0.2Mn0.56Ni0.17Co0.07]O2 cathode stabilized by metastable Li2SiO3 surface modification for advanced Li-ion batteries. Electrochimica Acta, 2018, 265: 244
|
[29] |
Yang C C, Liao P C, Wu Y S, et al. Electrochemical performance of Li-rich oxide composite material coated with Li0.75La0.42TiO3 ionic conductor. Appl Surf Sci, 2017, 399: 670
|
[30] |
Yi T F, Li Y M, Li X Y, et al. Enhanced electrochemical property of FePO4-coated LiNi0.5Mn1.5O4 as cathode materials for Li-ion battery. Sci Bull, 2017, 62(14): 1004
|
[31] |
Xiao B W, Wang B Q, Liu J, et al. Highly stable Li1.2Mn0.54Co0.13Ni0.13O2 enabled by novel atomic layer deposited AlPO4 coating. Nano Energy, 2017, 34: 120
|
[32] |
Shi S J, Tu J P, Zhang Y J, et al. Effect of Sm2O3 modification on Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material for lithium ion batteries. Electrochimica Acta, 2013, 108: 441
|
[33] |
Zhao Y J, Lv Z, Xu T, et al. SiO2 coated Li1.2Ni0.2Mn0.6O2 as cathode materials with rate performance, HF scavenging and thermal properties for Li-ion batteries. J Alloys Compd, 2017, 715: 105
|
[34] |
He L, Xu J M, Han T, et al. SmPO4-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a cathode material with enhanced cycling stability for lithium ion batteries. Ceram Int, 2017, 43(6): 5267
|
[35] |
Pan W, Peng W J, Yan G C, et al. Suppressing the voltage decay and enhancing the electrochemical performance of Li1.2Mn0.54Co0.13Ni0.13O2 by multifunctional Nb2O5 Coating. Energy Technol, 2018, 6(11): 2139
|
[36] |
Meng H X, Li L Q, Liu J Q, et al. Surface modification of Li-rich layered Li[Li0.17Ni0.17Co0.10Mn0.56]O2 oxide with LiV3O8 as a cathode material for Li-ion batteries. J Alloys Compd, 2017, 690: 256
|
[37] |
左成, 杜云慧, 張鵬, 等. Al2O3包覆Li1.2Mn0.54Ni0.13Co0.13O2富鋰正極材料的電化學性能. 材料研究學報, 2020, 34(8):621
Zuo C, Du Y H, Zhang P, et al. Electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 lithium-enriched cathode materials coated with Al2O3. Chin J Mater Res, 2020, 34(8): 621
|
[38] |
Shi S J, Tu J P, Tang Y Y, et al. Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method. Electrochimica Acta, 2013, 88: 671
|
[39] |
Liu S, Wang Z, Huang Y, et al. Fluorine doping and Al2O3 coating Co-modified Li[Li0.20Ni0.133Co0.133Mn0.534]O2 as high performance cathode material for lithium-ion batteries. J Alloys Compd, 2018, 731: 636
|
[40] |
Su N, Lyu Y C, Gu R, et al. Al2O3 coated Li1.2Ni0.2Mn0.2Ru0.4O2 as cathode material for Li-ion batteries. J Alloys Compd, 2018, 741: 398
|
[41] |
Dannehl N, Steinmüller S O, Szabó D, et al. High-resolution surface analysis on aluminum oxide-coated Li1.2Mn0.55Ni0.15Co0.1O2 with improved capacity retention. ACS Appl Mater Interfaces, 2018, 10(49): 43131
|
[42] |
Kobayashi G, Irii Y, Matsumoto F, et al. Improving cycling performance of Li-rich layered cathode materials through combination of Al2O3-based surface modification and stepwise precycling. J Power Sources, 2016, 303: 250 doi: 10.1016/j.jpowsour.2015.11.014
|
[43] |
Wang Z Y, Liu E Z, Guo L C, et al. Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating. Surf Coat Technol, 2013, 235: 570
|
[44] |
Kong J Z, Zhai H F, Qian X, et al. Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with ultrathin ZnO. J Alloys Compd, 2017, 694: 848
|
[45] |
?ahan H, G?ktepe H, Patat ?, et al. Effect of the Cr2O3 coating on electrochemical properties of spinel LiMn2O4 as a cathode material for lithium battery applications. Solid State Ionics, 2010, 181(31-32): 1437 doi: 10.1016/j.ssi.2010.08.008
|
[46] |
Chen C, Geng T F, Du C Y, et al. Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. J Power Sources, 2016, 331: 91
|
[47] |
Yuan W, Zhang H Z, Liu Q, et al. Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochimica Acta, 2014, 135: 199
|
[48] |
Zheng J M, Li J, Zhang Z R, et al. The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics, 2008, 179(27-32): 1794
|
[49] |
寇華日, 李喜飛, 劉文, 等. 原子層沉積MgO薄膜改性LiNi0.6Co0.2Mn0.2O2. 電子科技大學學報, 2020, 49(1):3
Kou H R, Li X F, Liu W, et al. Atomic layer deposition of ultrathin MgO coating onto LiNi0.6Co0.2Mn0.2O2. J Univ Electron Sci Technol China, 2020, 49(1): 3
|
[50] |
蘇岳鋒, 張其雨, 陳來, 等. ZrO2包覆高鎳LiNi0.8Co0.1Mn0.1O2正極材料提高其循環穩定性的作用機理. 物理化學學報, 2021, 37(3):110
Su Y F, Zhang Q Y, Chen L, et al. Effects of ZrO2 coating on Ni-rich Li Ni0.8Co0.1Mn0.1O2 cathodes with enhanced cycle stabilities. Acta Phys Chimica Sin, 2021, 37(3): 110
|
[51] |
甘永平, 林沛沛, 黃輝, 等. 表面活性劑對氧化鋁修飾富鋰錳基正極材料的影響. 物理化學學報, 2017, 33(6):1189 doi: 10.3866/PKU.WHXB201702221
Gan Y P, Lin P P, Huang H, et al. Effects of surfactants on Al2O3-modified Li-rich layered metal oxide cathode materials for advanced Li-ion batteries. Acta Phys Chimica Sin, 2017, 33(6): 1189 doi: 10.3866/PKU.WHXB201702221
|
[52] |
Chen Y W, Wang X C, Zhang J J, et al. Al2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes as cathode materials for high-performance lithium-ion batteries. RSC Adv, 2019, 9(4): 2172
|
[53] |
Rastgoo-Deylami M, Javanbakht M, Omidvar H. Enhanced performance of layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material in Li-ion batteries using nanoscale surface coating with fluorine-doped anatase TiO2. Solid State Ionics, 2019, 331: 74
|
[54] |
Pang S L, Wang Y G, Chen T, et al. The effect of AlF3 modification on the physicochemical and electrochemical properties of Li-rich layered oxide. Ceram Int, 2016, 42(4): 5397 doi: 10.1016/j.ceramint.2015.12.076
|
[55] |
Sun S W, Wan N, Wu Q, et al. Surface-modified Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with MgF2 as cathode for Li-ion battery. Solid State Ionics, 2015, 278: 85
|
[56] |
Zhang X P, Yang Y, Sun S W, et al. Multifunctional ZrF4 nanocoating for improving lithium storage performances in layered Li[Li0.2Ni0.17Co0.07Mn0.56]O2. Solid State Ionics, 2016, 284: 7
|
[57] |
Chong S K, Chen Y Z, Yan W W, et al. Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries. J Power Sources, 2016, 332: 230 doi: 10.1016/j.jpowsour.2016.09.028
|
[58] |
Liu X Y, Liu J, Huang T, et al. CaF2–coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochimica Acta, 2013, 109: 52
|
[59] |
Shapira A, Tiurin O, Solomatin N, et al. Robust AlF3 atomic layer deposition protective coating on LiMn1.5Ni0.5O4 particles: An advanced Li-ion battery cathode material powder. ACS Appl Energy Mater 2018, 1(12): 6809
|
[60] |
Abdel-Ghany A, El-Tawil R S, Hashem A M, et al. Improved electrochemical performance of LiNi0.5Mn0.5O2 by Li-enrichment and AlF3 coating. Materialia, 2019, 5: 100207
|
[61] |
Buchberger I, Seidlmayer S, Pokharel A, et al. Aging analysis of graphite/LiNi1/3Mn1/3Co1/3O2Cells using XRD, PGAA, and AC impedance. J Electrochem Soc, 2015, 162(14): A2737 doi: 10.1149/2.0721514jes
|
[62] |
Zheng J M, Zhang Z R, Wu X B, et al. The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Meet Abstr, 2008, 155(10): A775
|
[63] |
Niu B B, Li J L, Liu Y Y, et al. Re-understanding the function mechanism of surface coating: Modified Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathodes with YF3 for high performance lithium-ions batteries. Ceram Int, 2019, 45(9): 12484
|
[64] |
Jiang K C, Wu X L, Yin Y X, et al. Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries. ACS Appl Mater Interfaces, 2012, 4(9): 4858 doi: 10.1021/am301202a
|
[65] |
Song B H, Lai M O, Liu Z W, et al. Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries. J Mater Chem A, 2013, 1(34): 9954 doi: 10.1039/c3ta11580a
|
[66] |
Shi S J, Tu J P, Mai Y J, et al. Effect of carbon coating on electrochemical performance of Li1.048Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries. Electrochimica Acta, 2012, 63: 112
|
[67] |
Liu J, Wang Q Y, Reeja-Jayan B, et al. Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. Electrochem Commun, 2010, 12(6): 750
|
[68] |
Song B H, Zhou C F, Chen Y, et al. Role of carbon coating in improving electrochemical performance of Li-rich Li(Li0.2Mn0.54Ni0.13Co0.13)O2 cathode. RSC Adv, 2014, 4(83): 44244
|
[69] |
Ma D, Zhang P, Li Y, et al. Li1.2Mn0.54Ni0.13Co0.13O2–Encapsulated carbon nanofiber network cathodes with improved stability and rate capability for Li-ion batteries. Sci Rep, 2015, 5: 11257
|
[70] |
Yang S Y, Huang G, Hu S J, et al. Improved electrochemical performance of the Li1.2Ni0.13Co0.13Mn0.54O2 wired by CNT networks for lithium-ion batteries. Mater Lett, 2014, 118: 8
|
[71] |
Lu D, Chen Y F, Zheng C M, et al. In-situ generate spinel phase on a glucose-derived carbon-coated lithium-rich layered oxide cathode materials and its improved electrochemical performance. Ionics, 2020, 26(5): 2177 doi: 10.1007/s11581-019-03342-5
|
[72] |
Fu X Y, Wang J Q, Zhang L L, et al. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 prepared by using activated carbon as template and carbon source. Ionics, 2020, 26(9): 4423
|
[73] |
Wang D, Wang X Y, Yang X K, et al. Polyaniline modification and performance enhancement of lithium-rich cathode material based on layered-spinel hybrid structure. J Power Sources, 2015, 293: 89 doi: 10.1016/j.jpowsour.2015.05.058
|
[74] |
Zhang J, Lu Q W, Fang J H, et al. Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery. ACS Appl Mater Interfaces, 2014, 6(20): 17965 doi: 10.1021/am504796n
|
[75] |
Mu K C, Tao Y, Peng Z D, et al. Surface architecture modification of high capacity Li1.2Ni0.2Mn0.6O2 with synergistic conductive polymers LiPPA and PPy for lithium ion batteries. Appl Surf Sci, 2019, 495: 143503
|
[76] |
Wu F, Liu J R, Li L, et al. Surface modification of Li-rich cathode materials for lithium-ion batteries with a PEDOT: PSS conducting polymer. ACS Appl Mater Interfaces, 2016, 8(35): 23095 doi: 10.1021/acsami.6b07431
|
[77] |
劉九鼎, 張宇棟, 劉俊祥, 等. 磷酸鋰原位包覆富鋰錳基鋰離子電池正極材料. 化學學報, 2020, 78(12):1426 doi: 10.6023/A20070330
Liu J D, Zhang Y D, Liu J X, et al. In-situ Li3PO4 coating of Li-rich Mn-based cathode materials for lithium-ion batteries. Acta Chimica Sin, 2020, 78(12): 1426 doi: 10.6023/A20070330
|
[78] |
Liu B, Zhang Q, He S C, et al. Improved electrochemical properties of Li1.2Ni0.18Mn0.59Co0.03O2 by surface modification with LiCoPO4. Electrochimica Acta, 2011, 56(19): 6748
|
[79] |
Qiao Q Q, Zhang H Z, Li G R, et al. Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li–Mn–PO4 as the cathode for lithium-ion batteries. J Mater Chem A, 2013, 1(17): 5262
|
[80] |
Xu C S, Yu H T, Guo C F, et al. Surface modification of Li1.2Mn0.54Ni0.13Co0.13O2 via an ionic conductive LiV3O8 as a cathode material for Li-ion batteries. Ionics, 2019, 25(10): 4567
|