Citation: | LI Ran, XIE Yong, SUN Yu, KANG Zhuo, WANG Li, ZHANG Yue. Operando X-ray study of service behavior of catalytic materials based on synchrotron radiation[J]. Chinese Journal of Engineering, 2021, 43(6): 721-731. doi: 10.13374/j.issn2095-9389.2020.11.03.004 |
[1] |
Li X, Zhao L L, Yu J Y, et al. Water splitting: From electrode to green energy system. Nano Micro Lett, 2020, 12(1): 1 doi: 10.1007/s40820-019-0337-2
|
[2] |
Hong W T, Risch M, Stoerzinger K A, et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ Sci, 2015, 8(5): 1404 doi: 10.1039/C4EE03869J
|
[3] |
Zhu Y P, Guo C X, Zheng Y, et al. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc Chem Res, 2017, 50(4): 915 doi: 10.1021/acs.accounts.6b00635
|
[4] |
Jiao Y, Zheng Y, Jaroniec M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev, 2015, 44(8): 2060 doi: 10.1039/C4CS00470A
|
[5] |
Wang X S, Zheng Y, Sheng W C, et al. Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater Today, 2020, 36: 125 doi: 10.1016/j.mattod.2019.12.003
|
[6] |
黃康, 朱梅婷, 張飛鵬, 等. 一種高效雙功能電催化劑CoP/Co@NPC@rGO的制備. 工程科學學報, 2020, 42(1):91
Huang K, Zhu M T, Zhang F P, et al. Preparation of CoP/Co@NPC@rGO nanocomposites with an efficient bifunctional electrocatalyst for hydrogen evolution and oxygen evolution reaction. Chin J Eng, 2020, 42(1): 91
|
[7] |
Xu Z J. Transition metal oxides for water oxidation: All about oxyhydroxides? Sci China Mater, 2020, 63(1): 3
|
[8] |
Jiang H L, He Q, Zhang Y K, et al. Structural self-reconstruction of catalysts in electrocatalysis. Accounts Chem Res, 2018, 51(11): 2968 doi: 10.1021/acs.accounts.8b00449
|
[9] |
Zhu Y P, Wang J L, Chu H, et al. In situ/operando studies for designing next-generation electrocatalysts. ACS Energy Lett, 2020, 5(4): 1281 doi: 10.1021/acsenergylett.0c00305
|
[10] |
Wei C, Feng Z X, Baisariyev M, et al. Valence change ability and geometrical occupation of substitution cations determine the pseudocapacitance of spinel ferrite XFe2O4 (X = Mn, Co, Ni, Fe). Chem Mater, 2016, 28(12): 4129 doi: 10.1021/acs.chemmater.6b00713
|
[11] |
Timoshenko J, Roldan Cuenya B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem Rev, 2021, 121(2): 882 doi: 10.1021/acs.chemrev.0c00396
|
[12] |
Wang M Y, árnadóttir L, Xu Z J, et al. In situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts. Nano Micro Lett, 2019, 11(1): 1 doi: 10.1007/s40820-018-0235-z
|
[13] |
Zhu K Y, Zhu X F, Yang W S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew Chem Int Ed, 2019, 58(5): 1252 doi: 10.1002/anie.201802923
|
[14] |
Lee S, Bai L C, Hu X L. Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel-iron layered double hydroxide. Angew Chem Int Ed, 2020, 59(21): 8072 doi: 10.1002/anie.201915803
|
[15] |
Friebel D, Louie M W, Bajdich M, et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J Am Chem Soc, 2015, 137(3): 1305 doi: 10.1021/ja511559d
|
[16] |
Bates M K, Jia Q Y, Doan H, et al. Charge-transfer effects in Ni? Fe and Ni?Fe?Co mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catal, 2016, 6(1): 155 doi: 10.1021/acscatal.5b01481
|
[17] |
Wang D N, Zhou J G, Hu Y F, et al. In situ X-ray absorption near-edge structure study of advanced NiFe(OH)x electrocatalyst on carbon paper for water oxidation. J Phys Chem C, 2015, 119(34): 19573 doi: 10.1021/acs.jpcc.5b02685
|
[18] |
G?rlin M, Chernev P, Ferreira de Araújo J, et al. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni?Fe oxide water splitting electrocatalysts. J Am Chem Soc, 2016, 138(17): 5603 doi: 10.1021/jacs.6b00332
|
[19] |
Zheng X L, Zhang B, de Luna P, et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat Chem, 2018, 10(2): 149 doi: 10.1038/nchem.2886
|
[20] |
Bergmann A, Martinez-Moreno E, Teschner D, et al. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat Commun, 2015, 6: 8625 doi: 10.1038/ncomms9625
|
[21] |
Wu T Z, Sun S N, Song J J, et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat Catal, 2019, 2(9): 763 doi: 10.1038/s41929-019-0325-4
|
[22] |
Xiao Z H, Huang Y C, Dong C L, et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J Am Chem Soc, 2020, 142(28): 12087 doi: 10.1021/jacs.0c00257
|
[23] |
Suntivich J, May K J, Gasteiger H A, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science, 2011, 334(6061): 1383 doi: 10.1126/science.1212858
|
[24] |
Hwang J, Rao R R, Giordano L, et al. Perovskites in catalysis and electrocatalysis. Science, 2017, 358(6364): 751 doi: 10.1126/science.aam7092
|
[25] |
May K J, Carlton C E, Stoerzinger K A, et al. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J Phys Chem Lett, 2012, 3(22): 3264 doi: 10.1021/jz301414z
|
[26] |
Song S Z, Zhou J, Su X Z, et al. Operando X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy Environ Sci, 2018, 11(10): 2945 doi: 10.1039/C8EE00773J
|
[27] |
Fabbri E, Nachtegaal M, Binninger T, et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat Mater, 2017, 16(9): 925 doi: 10.1038/nmat4938
|
[28] |
Kim B J, Fabbri E, Abbott D F, et al. Functional role of Fe-doping in Co-based perovskite oxide catalysts for oxygen evolution reaction. J Am Chem Soc, 2019, 141(13): 5231 doi: 10.1021/jacs.8b12101
|
[29] |
Tung C W, Hsu Y Y, Shen Y P, et al. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat Commun, 2015, 6: 8106 doi: 10.1038/ncomms9106
|
[30] |
Wang H Y, Hung S F, Hsu Y Y, et al. In situ spectroscopic identification of μ-OO bridging on spinel Co3O4 water oxidation electrocatalyst. J Phys Chem Lett, 2016, 7(23): 4847 doi: 10.1021/acs.jpclett.6b02147
|
[31] |
Dionigi F, Zeng Z H, Sinev I, et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat Commun, 2020, 11(1): 2522 doi: 10.1038/s41467-020-16237-1
|
[32] |
Siegbahn H, Siegbahn K. ESCA applied to liquids. J Electron Spectrosc Relat Phenom, 1973, 2(3): 319 doi: 10.1016/0368-2048(73)80023-4
|
[33] |
Joyner R W, Roberts M W, Yates K. A “high-pressure” electron spectrometer for surface studies. Surf Sci, 1979, 87(2): 501 doi: 10.1016/0039-6028(79)90544-2
|
[34] |
Ruppender H J, Grunze M, Kong C W, et al. In situ X-ray photoelectron spectroscopy of surfaces at pressures up to 1 mbar. Surf Interface Anal, 1990, 15(4): 245 doi: 10.1002/sia.740150403
|
[35] |
Ogletree D F, Bluhm H, Hebenstreit E D, et al. Photoelectron spectroscopy under ambient pressure and temperature conditions. Nucl Instrum Methods Phys Res Sect A, 2009, 601(1-2): 151 doi: 10.1016/j.nima.2008.12.155
|
[36] |
Kaya S, Ogasawara H, N?slund L ?, et al. Ambient-pressure photoelectron spectroscopy for heterogeneous catalysis and electrochemistry. Catal Today, 2013, 205: 101 doi: 10.1016/j.cattod.2012.08.005
|
[37] |
Ogletree D F, Bluhm H, Lebedev G, et al. A differentially pumped electrostatic lens system for photoemission studies in the millibar range. Rev Sci Instrum, 2002, 73(11): 3872 doi: 10.1063/1.1512336
|
[38] |
Starr D E, Liu Z, H?vecker M, et al. Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem Soc Rev, 2013, 42(13): 5833 doi: 10.1039/c3cs60057b
|
[39] |
Fadley C S. X-ray photoelectron spectroscopy and diffraction in the hard X-ray regime: Fundamental considerations and future possibilities. Nucl Instrum Methods Phys Res Sect A, 2005, 547(1): 24 doi: 10.1016/j.nima.2005.05.009
|
[40] |
Roy K, Artiglia L, van Bokhoven J A. Ambient pressure photoelectron spectroscopy: Opportunities in catalysis from solids to liquids and introducing time resolution. Chem Cat Chem, 2018, 10(4): 666
|
[41] |
Stoerzinger K A, Hong W T, Crumlin E J, et al. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy. Acc Chem Res, 2015, 48(11): 2976 doi: 10.1021/acs.accounts.5b00275
|
[42] |
Axnanda S, Crumlin E J, Mao B H, et al. Using “tender” X-ray ambient pressure X-ray photoelectron spectroscopy as A direct probe of solid-liquid interface. Sci Rep, 2015, 5: 9788 doi: 10.1038/srep09788
|
[43] |
Handoko A D, Wei F X, Jenndy, et al. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat Catal, 2018, 1(12): 922 doi: 10.1038/s41929-018-0182-6
|
[44] |
Favaro M, Valero-Vidal C, Eichhorn J, et al. Elucidating the alkaline oxygen evolution reaction mechanism on platinum. J Mater Chem A, 2017, 5(23): 11634 doi: 10.1039/C7TA00409E
|
[45] |
Stoerzinger K A, Favaro M, Ross P N, et al. Probing the surface of platinum during the hydrogen evolution reaction in alkaline electrolyte. J Phys Chem B, 2018, 122(2): 864 doi: 10.1021/acs.jpcb.7b06953
|
[46] |
Saveleva V, Wang L, Teschner D, et al. Operando evidence for a universal oxygen evolution mechanism on thermal and electrochemical iridium oxides. J Phys Chem Lett, 2018, 9(11): 3154 doi: 10.1021/acs.jpclett.8b00810
|
[47] |
Casalongue S H G, Ng M L, Kaya S, et al. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew Chem Int Ed, 2014, 53(28): 7169 doi: 10.1002/anie.201402311
|
[48] |
Trotochaud L, Young S L, Ranney J K, et al. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J Am Chem Soc, 2014, 136(18): 6744 doi: 10.1021/ja502379c
|
[49] |
G?rlin M, de Araújo J F, Schmies H, et al. Tracking catalyst redox states and reaction dynamics in Ni?Fe oxyhydroxide oxygen evolution reaction electrocatalysts: The role of catalyst support and electrolyte pH. J Am Chem Soc, 2017, 139(5): 2070 doi: 10.1021/jacs.6b12250
|
[50] |
Ali-L?ytty H, Louie M W, Singh M R, et al. Ambient-pressure XPS study of a Ni?Fe electrocatalyst for the oxygen evolution reaction. J Phys Chem C, 2016, 120(4): 2247 doi: 10.1021/acs.jpcc.5b10931
|
[51] |
Favaro M, Drisdell W S, Marcus M A, et al. An operando investigation of (Ni?Fe?Co?Ce)ox system as highly efficient electrocatalyst for oxygen evolution reaction. ACS Catal, 2017, 7(2): 1248 doi: 10.1021/acscatal.6b03126
|
[52] |
Favaro M, Yang J H, Nappini S, et al. Understanding the oxygen evolution reaction mechanism on CoOx using operando ambient-pressure X-ray photoelectron spectroscopy. J Am Chem Soc, 2017, 139(26): 8960 doi: 10.1021/jacs.7b03211
|