<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
LI Ran, XIE Yong, SUN Yu, KANG Zhuo, WANG Li, ZHANG Yue. Operando X-ray study of service behavior of catalytic materials based on synchrotron radiation[J]. Chinese Journal of Engineering, 2021, 43(6): 721-731. doi: 10.13374/j.issn2095-9389.2020.11.03.004
Citation: LI Ran, XIE Yong, SUN Yu, KANG Zhuo, WANG Li, ZHANG Yue. Operando X-ray study of service behavior of catalytic materials based on synchrotron radiation[J]. Chinese Journal of Engineering, 2021, 43(6): 721-731. doi: 10.13374/j.issn2095-9389.2020.11.03.004

Operando X-ray study of service behavior of catalytic materials based on synchrotron radiation

doi: 10.13374/j.issn2095-9389.2020.11.03.004
More Information
  • Considering the energy and environmental issues faced by human society, hydrogen has become increasingly important, and electrocatalytic water splitting is considered to be an ideal way to solve these energy issues. However, although most electrocatalysts will undergo a structural evolution when in service conditions, our understanding of the service behavior of catalysts is limited. To design highly active catalysts, operando characterization techniques must be used to study their dynamic structural evolution. Today, the development of synchrotron radiation devices has reached an important stage. Synchrotron-radiation-based X-ray characterization, which has high energy, large flux, and excellent collimation compared with the ordinary laboratory X-ray source, can capture the precise structure of catalytic materials. In this review, we present the development status of synchrotron radiation devices and the basic principles of operando X-ray absorption spectroscopy, X-ray diffraction spectroscopy, and X-ray photoelectron spectroscopy based on synchrotron radiation. In addition, we highlight studies related to the dynamic service behavior of water-splitting catalysts under real conditions and list a variety of operando studies of typical water-splitting catalysts, including NiFe hydroxide/(oxy)hydroxides, perovskite oxides, spinel oxides, and noble-metal-based catalysts. The use of operando X-ray techniques deepens our understanding of the catalyst reaction mechanism and provides a basis for identifying the dynamic structure–performance correlation of catalysts. We summarize the problems and challenges of operando X-ray-based techniques in complex electrochemical environments and propose the prospect of an advanced synchrotron radiation facility for operando X-ray characterization. With the development of the next-generation synchrotron radiation facility, adequately using this advanced X-ray light source to study the dynamic structure–activity correlation of catalytic materials throughout their life cycle to achieve the precise design and synthesis of complex pre-catalysts will advance the development of this field by enabling greater refinement and control.

     

  • loading
  • [1]
    Li X, Zhao L L, Yu J Y, et al. Water splitting: From electrode to green energy system. Nano Micro Lett, 2020, 12(1): 1 doi: 10.1007/s40820-019-0337-2
    [2]
    Hong W T, Risch M, Stoerzinger K A, et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ Sci, 2015, 8(5): 1404 doi: 10.1039/C4EE03869J
    [3]
    Zhu Y P, Guo C X, Zheng Y, et al. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc Chem Res, 2017, 50(4): 915 doi: 10.1021/acs.accounts.6b00635
    [4]
    Jiao Y, Zheng Y, Jaroniec M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev, 2015, 44(8): 2060 doi: 10.1039/C4CS00470A
    [5]
    Wang X S, Zheng Y, Sheng W C, et al. Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater Today, 2020, 36: 125 doi: 10.1016/j.mattod.2019.12.003
    [6]
    黃康, 朱梅婷, 張飛鵬, 等. 一種高效雙功能電催化劑CoP/Co@NPC@rGO的制備. 工程科學學報, 2020, 42(1):91

    Huang K, Zhu M T, Zhang F P, et al. Preparation of CoP/Co@NPC@rGO nanocomposites with an efficient bifunctional electrocatalyst for hydrogen evolution and oxygen evolution reaction. Chin J Eng, 2020, 42(1): 91
    [7]
    Xu Z J. Transition metal oxides for water oxidation: All about oxyhydroxides? Sci China Mater, 2020, 63(1): 3
    [8]
    Jiang H L, He Q, Zhang Y K, et al. Structural self-reconstruction of catalysts in electrocatalysis. Accounts Chem Res, 2018, 51(11): 2968 doi: 10.1021/acs.accounts.8b00449
    [9]
    Zhu Y P, Wang J L, Chu H, et al. In situ/operando studies for designing next-generation electrocatalysts. ACS Energy Lett, 2020, 5(4): 1281 doi: 10.1021/acsenergylett.0c00305
    [10]
    Wei C, Feng Z X, Baisariyev M, et al. Valence change ability and geometrical occupation of substitution cations determine the pseudocapacitance of spinel ferrite XFe2O4 (X = Mn, Co, Ni, Fe). Chem Mater, 2016, 28(12): 4129 doi: 10.1021/acs.chemmater.6b00713
    [11]
    Timoshenko J, Roldan Cuenya B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem Rev, 2021, 121(2): 882 doi: 10.1021/acs.chemrev.0c00396
    [12]
    Wang M Y, árnadóttir L, Xu Z J, et al. In situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts. Nano Micro Lett, 2019, 11(1): 1 doi: 10.1007/s40820-018-0235-z
    [13]
    Zhu K Y, Zhu X F, Yang W S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew Chem Int Ed, 2019, 58(5): 1252 doi: 10.1002/anie.201802923
    [14]
    Lee S, Bai L C, Hu X L. Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel-iron layered double hydroxide. Angew Chem Int Ed, 2020, 59(21): 8072 doi: 10.1002/anie.201915803
    [15]
    Friebel D, Louie M W, Bajdich M, et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J Am Chem Soc, 2015, 137(3): 1305 doi: 10.1021/ja511559d
    [16]
    Bates M K, Jia Q Y, Doan H, et al. Charge-transfer effects in Ni? Fe and Ni?Fe?Co mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catal, 2016, 6(1): 155 doi: 10.1021/acscatal.5b01481
    [17]
    Wang D N, Zhou J G, Hu Y F, et al. In situ X-ray absorption near-edge structure study of advanced NiFe(OH)x electrocatalyst on carbon paper for water oxidation. J Phys Chem C, 2015, 119(34): 19573 doi: 10.1021/acs.jpcc.5b02685
    [18]
    G?rlin M, Chernev P, Ferreira de Araújo J, et al. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni?Fe oxide water splitting electrocatalysts. J Am Chem Soc, 2016, 138(17): 5603 doi: 10.1021/jacs.6b00332
    [19]
    Zheng X L, Zhang B, de Luna P, et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat Chem, 2018, 10(2): 149 doi: 10.1038/nchem.2886
    [20]
    Bergmann A, Martinez-Moreno E, Teschner D, et al. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat Commun, 2015, 6: 8625 doi: 10.1038/ncomms9625
    [21]
    Wu T Z, Sun S N, Song J J, et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat Catal, 2019, 2(9): 763 doi: 10.1038/s41929-019-0325-4
    [22]
    Xiao Z H, Huang Y C, Dong C L, et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J Am Chem Soc, 2020, 142(28): 12087 doi: 10.1021/jacs.0c00257
    [23]
    Suntivich J, May K J, Gasteiger H A, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science, 2011, 334(6061): 1383 doi: 10.1126/science.1212858
    [24]
    Hwang J, Rao R R, Giordano L, et al. Perovskites in catalysis and electrocatalysis. Science, 2017, 358(6364): 751 doi: 10.1126/science.aam7092
    [25]
    May K J, Carlton C E, Stoerzinger K A, et al. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J Phys Chem Lett, 2012, 3(22): 3264 doi: 10.1021/jz301414z
    [26]
    Song S Z, Zhou J, Su X Z, et al. Operando X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy Environ Sci, 2018, 11(10): 2945 doi: 10.1039/C8EE00773J
    [27]
    Fabbri E, Nachtegaal M, Binninger T, et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat Mater, 2017, 16(9): 925 doi: 10.1038/nmat4938
    [28]
    Kim B J, Fabbri E, Abbott D F, et al. Functional role of Fe-doping in Co-based perovskite oxide catalysts for oxygen evolution reaction. J Am Chem Soc, 2019, 141(13): 5231 doi: 10.1021/jacs.8b12101
    [29]
    Tung C W, Hsu Y Y, Shen Y P, et al. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat Commun, 2015, 6: 8106 doi: 10.1038/ncomms9106
    [30]
    Wang H Y, Hung S F, Hsu Y Y, et al. In situ spectroscopic identification of μ-OO bridging on spinel Co3O4 water oxidation electrocatalyst. J Phys Chem Lett, 2016, 7(23): 4847 doi: 10.1021/acs.jpclett.6b02147
    [31]
    Dionigi F, Zeng Z H, Sinev I, et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat Commun, 2020, 11(1): 2522 doi: 10.1038/s41467-020-16237-1
    [32]
    Siegbahn H, Siegbahn K. ESCA applied to liquids. J Electron Spectrosc Relat Phenom, 1973, 2(3): 319 doi: 10.1016/0368-2048(73)80023-4
    [33]
    Joyner R W, Roberts M W, Yates K. A “high-pressure” electron spectrometer for surface studies. Surf Sci, 1979, 87(2): 501 doi: 10.1016/0039-6028(79)90544-2
    [34]
    Ruppender H J, Grunze M, Kong C W, et al. In situ X-ray photoelectron spectroscopy of surfaces at pressures up to 1 mbar. Surf Interface Anal, 1990, 15(4): 245 doi: 10.1002/sia.740150403
    [35]
    Ogletree D F, Bluhm H, Hebenstreit E D, et al. Photoelectron spectroscopy under ambient pressure and temperature conditions. Nucl Instrum Methods Phys Res Sect A, 2009, 601(1-2): 151 doi: 10.1016/j.nima.2008.12.155
    [36]
    Kaya S, Ogasawara H, N?slund L ?, et al. Ambient-pressure photoelectron spectroscopy for heterogeneous catalysis and electrochemistry. Catal Today, 2013, 205: 101 doi: 10.1016/j.cattod.2012.08.005
    [37]
    Ogletree D F, Bluhm H, Lebedev G, et al. A differentially pumped electrostatic lens system for photoemission studies in the millibar range. Rev Sci Instrum, 2002, 73(11): 3872 doi: 10.1063/1.1512336
    [38]
    Starr D E, Liu Z, H?vecker M, et al. Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem Soc Rev, 2013, 42(13): 5833 doi: 10.1039/c3cs60057b
    [39]
    Fadley C S. X-ray photoelectron spectroscopy and diffraction in the hard X-ray regime: Fundamental considerations and future possibilities. Nucl Instrum Methods Phys Res Sect A, 2005, 547(1): 24 doi: 10.1016/j.nima.2005.05.009
    [40]
    Roy K, Artiglia L, van Bokhoven J A. Ambient pressure photoelectron spectroscopy: Opportunities in catalysis from solids to liquids and introducing time resolution. Chem Cat Chem, 2018, 10(4): 666
    [41]
    Stoerzinger K A, Hong W T, Crumlin E J, et al. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy. Acc Chem Res, 2015, 48(11): 2976 doi: 10.1021/acs.accounts.5b00275
    [42]
    Axnanda S, Crumlin E J, Mao B H, et al. Using “tender” X-ray ambient pressure X-ray photoelectron spectroscopy as A direct probe of solid-liquid interface. Sci Rep, 2015, 5: 9788 doi: 10.1038/srep09788
    [43]
    Handoko A D, Wei F X, Jenndy, et al. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat Catal, 2018, 1(12): 922 doi: 10.1038/s41929-018-0182-6
    [44]
    Favaro M, Valero-Vidal C, Eichhorn J, et al. Elucidating the alkaline oxygen evolution reaction mechanism on platinum. J Mater Chem A, 2017, 5(23): 11634 doi: 10.1039/C7TA00409E
    [45]
    Stoerzinger K A, Favaro M, Ross P N, et al. Probing the surface of platinum during the hydrogen evolution reaction in alkaline electrolyte. J Phys Chem B, 2018, 122(2): 864 doi: 10.1021/acs.jpcb.7b06953
    [46]
    Saveleva V, Wang L, Teschner D, et al. Operando evidence for a universal oxygen evolution mechanism on thermal and electrochemical iridium oxides. J Phys Chem Lett, 2018, 9(11): 3154 doi: 10.1021/acs.jpclett.8b00810
    [47]
    Casalongue S H G, Ng M L, Kaya S, et al. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew Chem Int Ed, 2014, 53(28): 7169 doi: 10.1002/anie.201402311
    [48]
    Trotochaud L, Young S L, Ranney J K, et al. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J Am Chem Soc, 2014, 136(18): 6744 doi: 10.1021/ja502379c
    [49]
    G?rlin M, de Araújo J F, Schmies H, et al. Tracking catalyst redox states and reaction dynamics in Ni?Fe oxyhydroxide oxygen evolution reaction electrocatalysts: The role of catalyst support and electrolyte pH. J Am Chem Soc, 2017, 139(5): 2070 doi: 10.1021/jacs.6b12250
    [50]
    Ali-L?ytty H, Louie M W, Singh M R, et al. Ambient-pressure XPS study of a Ni?Fe electrocatalyst for the oxygen evolution reaction. J Phys Chem C, 2016, 120(4): 2247 doi: 10.1021/acs.jpcc.5b10931
    [51]
    Favaro M, Drisdell W S, Marcus M A, et al. An operando investigation of (Ni?Fe?Co?Ce)ox system as highly efficient electrocatalyst for oxygen evolution reaction. ACS Catal, 2017, 7(2): 1248 doi: 10.1021/acscatal.6b03126
    [52]
    Favaro M, Yang J H, Nappini S, et al. Understanding the oxygen evolution reaction mechanism on CoOx using operando ambient-pressure X-ray photoelectron spectroscopy. J Am Chem Soc, 2017, 139(26): 8960 doi: 10.1021/jacs.7b03211
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)

    Article views (1725) PDF downloads(144) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频