<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
LIU Jia, ZHANG Ying-hua, HUANG Zhi-an, BAI Zhi-ming, GAO Yu-kun. Photoelectrocatalytic oxidation of methane over three-dimensional ZnO/CdS/NiFe layered double hydroxide[J]. Chinese Journal of Engineering, 2021, 43(8): 1064-1072. doi: 10.13374/j.issn2095-9389.2020.11.02.001
Citation: LIU Jia, ZHANG Ying-hua, HUANG Zhi-an, BAI Zhi-ming, GAO Yu-kun. Photoelectrocatalytic oxidation of methane over three-dimensional ZnO/CdS/NiFe layered double hydroxide[J]. Chinese Journal of Engineering, 2021, 43(8): 1064-1072. doi: 10.13374/j.issn2095-9389.2020.11.02.001

Photoelectrocatalytic oxidation of methane over three-dimensional ZnO/CdS/NiFe layered double hydroxide

doi: 10.13374/j.issn2095-9389.2020.11.02.001
More Information
  • Corresponding author: E-mail: zhangyinghuaustb@sina.com
  • Received Date: 2020-11-02
    Available Online: 2021-03-13
  • Publish Date: 2021-08-25
  • The direct conversion of methane into methanol and other high value-added chemicals with low-energy consumption has always been an important goal and a major challenge for the sustainable chemical industry. In this paper, a three-dimensional (3D) ZnO/CdS/NiFe layered double hydroxide (LDH) shell/core/hierarchical nanowire arrays (NWAs) structure material was fabricated and utilized for photoelectrocatalytic oxidation of methane at room temperature under simulated sunlight. Results show that the ZnO/CdS/NiFe-LDH photoanode exhibites excellent photoelectrochemical performance and catalytic activity. The photocurrent density under the methane atmosphere reached 6.57 mA·cm?2 at 0.9 V (vs RHE). Yields of methane oxidation products, which mainly are methanol (CH3OH) and formic acid (HCOOH), catalyzed by the synthesized ZnO/CdS/NiFe-LDH composite are 5.0 and 6.3 times those of pure ZnO, respectively. The total Faraday efficiency of the two main products reach 54.87%. The deposition of CdS nanoparticles (NPs) significantly facilitates the absorption of visible light and promotes the separation of photo-generated carriers. The introduction of NiFe-LDH nanosheets with a three-dimensional porous structure improves the surface reaction kinetics of methane oxidation, acting as an excellent co-catalyst. It also effectively inhibites the production of O2?-, preventing O2?- from further oxidizing methanol and formic acid into CO2, which improves the selectivity of methanol and formic acid. Finally, this paper proposed a mechanism of the photoelectrocatalytic oxidation of methane to methanol and formic acid over 3D ZnO/CdS/NiFe-LDH composite material, which provides a new idea for the conversion of methane into high-value chemicals with low-energy consumption.

     

  • loading
  • [1]
    Xu S, Gou Q Y, Hao F, et al. Shale pore structure characteristics of the high and low productivity wells, Jiaoshiba shale gas field, Sichuan Basin, China: Dominated by lithofacies or preservation condition? Mar Petroleum Geol, 2020, 114: 104211 doi: 10.1016/j.marpetgeo.2019.104211
    [2]
    Zeng S, Gu J F, Yang S Y, et al. Comparison of techno-economic performance and environmental impacts between shale gas and coal-based synthetic natural gas (SNG) in China. J Clean Prod, 2019, 215: 544 doi: 10.1016/j.jclepro.2019.01.101
    [3]
    Zhang Q J, He D H, Zhu Q M. Direct partial oxidation of methane to methanol: Reaction zones and role of catalyst location. J Nat Gas Chem, 2008, 17(1): 24 doi: 10.1016/S1003-9953(08)60021-3
    [4]
    Alvarez-Galvan M C, Mota N, Ojeda M, et al. Direct methane conversion routes to chemicals and fuels. Catal Today, 2011, 171(1): 15 doi: 10.1016/j.cattod.2011.02.028
    [5]
    Peerakiatkhajohn P, Yun J H, Chen H, et al. Stable hematite nanosheet photoanodes for enhanced photoelectrochemical water splitting. Adv Mater, 2016, 28(30): 6405 doi: 10.1002/adma.201601525
    [6]
    Jiang C, Moniz S J A, Wang A, et al. Photoelectrochemical devices for solar water splitting-materials and challenges. Chem Soc Rev, 2017, 46(15): 4645 doi: 10.1039/C6CS00306K
    [7]
    Liu H M, Wu P, Li H T, et al. Unravelling the effects of layered supports on Ru nanoparticles for enhancing N2 reduction in photocatalytic ammonia synthesis. Appl Catal B:Environ, 2019, 259: 118026 doi: 10.1016/j.apcatb.2019.118026
    [8]
    Ithisuphalap K, Zhang H G, Guo L, et al. Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis. Small Methods, 2019, 3(6): 1800352 doi: 10.1002/smtd.201800352
    [9]
    AlOtaibi B, Kong X, Vanka S, et al. Photochemical carbon dioxide reduction on Mg-doped Ga(in)N nanowire arrays under visible light irradiation. ACS Energy Lett, 2016, 1(1): 246 doi: 10.1021/acsenergylett.6b00119
    [10]
    Sagara N, Kamimura S, Tsubota T, et al. Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light. Appl Catal B:Environ, 2016, 192: 193 doi: 10.1016/j.apcatb.2016.03.055
    [11]
    Hameed A, Ismail I M I, Aslam M, et al. Photocatalytic conversion of methane into methanol: Performance of silver impregnated WO3. Appl Catal A:Gen, 2014, 470: 327 doi: 10.1016/j.apcata.2013.10.045
    [12]
    Gondal M A, Hameed A, Suwaiyan A. Photo-catalytic conversion of methane into methanol using visible laser. Appl Catal A:Gen, 2003, 243(1): 165 doi: 10.1016/S0926-860X(02)00562-8
    [13]
    Villa K, Murcia-López S, Morante J R, et al. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol. Appl Catal B:Environ, 2016, 187: 30 doi: 10.1016/j.apcatb.2016.01.032
    [14]
    Chen X, Li Y, Pan X, et al. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat Commun, 2016, 7: 12273 doi: 10.1038/ncomms12273
    [15]
    Li W, He D, Hu G X, et al. Selective CO production by photoelectrochemical methane oxidation on TiO2. ACS Central Sci, 2018, 4(5): 631 doi: 10.1021/acscentsci.8b00130
    [16]
    Amano F, Shintani A, Tsurui K, et al. Photoelectrochemical homocoupling of methane under blue light irradiation. ACS Energy Lett, 2019, 4(2): 502 doi: 10.1021/acsenergylett.8b02436
    [17]
    李蕊, 夏仡, 許磊, 等. 微波水熱法快速合成氧化鋅納米棒及其光催化性能. 工程科學學報, 2020, 42(1):78

    Li R, Xia Y, Xu L, et al. Study of rapidly synthesis of ZnO nanorods by microwave hydrothermal method and photocatalytic performance. Chin J Eng, 2020, 42(1): 78
    [18]
    Bai X J, Wang L, Zong R L, et al. Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization. Langmuir, 2013, 29(9): 3097 doi: 10.1021/la4001768
    [19]
    Bai Z M, Zhang Y H. A Cu2O/Cu2S?ZnO/CdS tandem photoelectrochemical cell for self-driven solar water splitting. J Alloys Compd, 2017, 698: 133 doi: 10.1016/j.jallcom.2016.12.261
    [20]
    Pascariu P, Homocianu M, Cojocaru C, et al. Preparation of La doped ZnO ceramic nanostructures by electrospinning-calcination method: Effect of La3+ doping on optical and photocatalytic properties. Appl Surf Sci, 2019, 476: 16 doi: 10.1016/j.apsusc.2019.01.077
    [21]
    Sowik J, Miodyńska M, Bajorowicz B, et al. Optical and photocatalytic properties of rare earth metal-modified ZnO quantum dots. Appl Surf Sci, 2019, 464: 651 doi: 10.1016/j.apsusc.2018.09.104
    [22]
    Bai Z M, Yan X Q, Li Y, et al. 3D-branched ZnO/CdS nanowire arrays for solar water splitting and the service safety research. Adv Energy Mater, 2016, 6(3): 1501459 doi: 10.1002/aenm.201501459
    [23]
    Luo J, Im J H, Mayer M T, et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345(6204): 1593 doi: 10.1126/science.1258307
    [24]
    Hou Y, Wen Z H, Cui S M, et al. Strongly coupled ternary hybrid aerogels of N-deficient porous graphitic-C3N4 nanosheets/N-doped graphene/NiFe-layered double hydroxide for solar-driven photoelectrochemical water oxidation. Nano Lett, 2016, 16(4): 2268 doi: 10.1021/acs.nanolett.5b04496
    [25]
    Liu J, Zhang Y H, Huang Z A, et al. Photoelectrocatalytic oxidation of methane into methanol over ZnO nanowire arrays decorated with plasmonic Au nanoparticles. Nano, 2019, 14(2): 1950017 doi: 10.1142/S1793292019500176
    [26]
    Tak Y, Hong S J, Lee J S, et al. Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J Mater Chem, 2009, 19(33): 5945 doi: 10.1039/b904993b
    [27]
    Weng B, Yang M Q, Zhang N, et al. Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide. J Mater Chem A, 2014, 2(24): 9380 doi: 10.1039/c4ta01077a
    [28]
    Daems N, Sheng X, Vankelecom I F J, et al. Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J Mater Chem A, 2014, 2(12): 4085 doi: 10.1039/C3TA14043A
    [29]
    Lu Z Y, Xu W W, Zhu W, et al. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem Commun, 2014, 50(49): 6479 doi: 10.1039/C4CC01625D
    [30]
    Liang H F, Meng F, Cabán-Acevedo M, et al. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett, 2015, 15(2): 1421 doi: 10.1021/nl504872s
    [31]
    Xie J J, Jin R X, Li A, et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat Catal, 2018, 1(11): 889 doi: 10.1038/s41929-018-0170-x
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)

    Article views (3275) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频