Citation: | LIU Jia, ZHANG Ying-hua, HUANG Zhi-an, BAI Zhi-ming, GAO Yu-kun. Photoelectrocatalytic oxidation of methane over three-dimensional ZnO/CdS/NiFe layered double hydroxide[J]. Chinese Journal of Engineering, 2021, 43(8): 1064-1072. doi: 10.13374/j.issn2095-9389.2020.11.02.001 |
[1] |
Xu S, Gou Q Y, Hao F, et al. Shale pore structure characteristics of the high and low productivity wells, Jiaoshiba shale gas field, Sichuan Basin, China: Dominated by lithofacies or preservation condition? Mar Petroleum Geol, 2020, 114: 104211 doi: 10.1016/j.marpetgeo.2019.104211
|
[2] |
Zeng S, Gu J F, Yang S Y, et al. Comparison of techno-economic performance and environmental impacts between shale gas and coal-based synthetic natural gas (SNG) in China. J Clean Prod, 2019, 215: 544 doi: 10.1016/j.jclepro.2019.01.101
|
[3] |
Zhang Q J, He D H, Zhu Q M. Direct partial oxidation of methane to methanol: Reaction zones and role of catalyst location. J Nat Gas Chem, 2008, 17(1): 24 doi: 10.1016/S1003-9953(08)60021-3
|
[4] |
Alvarez-Galvan M C, Mota N, Ojeda M, et al. Direct methane conversion routes to chemicals and fuels. Catal Today, 2011, 171(1): 15 doi: 10.1016/j.cattod.2011.02.028
|
[5] |
Peerakiatkhajohn P, Yun J H, Chen H, et al. Stable hematite nanosheet photoanodes for enhanced photoelectrochemical water splitting. Adv Mater, 2016, 28(30): 6405 doi: 10.1002/adma.201601525
|
[6] |
Jiang C, Moniz S J A, Wang A, et al. Photoelectrochemical devices for solar water splitting-materials and challenges. Chem Soc Rev, 2017, 46(15): 4645 doi: 10.1039/C6CS00306K
|
[7] |
Liu H M, Wu P, Li H T, et al. Unravelling the effects of layered supports on Ru nanoparticles for enhancing N2 reduction in photocatalytic ammonia synthesis. Appl Catal B:Environ, 2019, 259: 118026 doi: 10.1016/j.apcatb.2019.118026
|
[8] |
Ithisuphalap K, Zhang H G, Guo L, et al. Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis. Small Methods, 2019, 3(6): 1800352 doi: 10.1002/smtd.201800352
|
[9] |
AlOtaibi B, Kong X, Vanka S, et al. Photochemical carbon dioxide reduction on Mg-doped Ga(in)N nanowire arrays under visible light irradiation. ACS Energy Lett, 2016, 1(1): 246 doi: 10.1021/acsenergylett.6b00119
|
[10] |
Sagara N, Kamimura S, Tsubota T, et al. Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light. Appl Catal B:Environ, 2016, 192: 193 doi: 10.1016/j.apcatb.2016.03.055
|
[11] |
Hameed A, Ismail I M I, Aslam M, et al. Photocatalytic conversion of methane into methanol: Performance of silver impregnated WO3. Appl Catal A:Gen, 2014, 470: 327 doi: 10.1016/j.apcata.2013.10.045
|
[12] |
Gondal M A, Hameed A, Suwaiyan A. Photo-catalytic conversion of methane into methanol using visible laser. Appl Catal A:Gen, 2003, 243(1): 165 doi: 10.1016/S0926-860X(02)00562-8
|
[13] |
Villa K, Murcia-López S, Morante J R, et al. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol. Appl Catal B:Environ, 2016, 187: 30 doi: 10.1016/j.apcatb.2016.01.032
|
[14] |
Chen X, Li Y, Pan X, et al. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat Commun, 2016, 7: 12273 doi: 10.1038/ncomms12273
|
[15] |
Li W, He D, Hu G X, et al. Selective CO production by photoelectrochemical methane oxidation on TiO2. ACS Central Sci, 2018, 4(5): 631 doi: 10.1021/acscentsci.8b00130
|
[16] |
Amano F, Shintani A, Tsurui K, et al. Photoelectrochemical homocoupling of methane under blue light irradiation. ACS Energy Lett, 2019, 4(2): 502 doi: 10.1021/acsenergylett.8b02436
|
[17] |
李蕊, 夏仡, 許磊, 等. 微波水熱法快速合成氧化鋅納米棒及其光催化性能. 工程科學學報, 2020, 42(1):78
Li R, Xia Y, Xu L, et al. Study of rapidly synthesis of ZnO nanorods by microwave hydrothermal method and photocatalytic performance. Chin J Eng, 2020, 42(1): 78
|
[18] |
Bai X J, Wang L, Zong R L, et al. Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization. Langmuir, 2013, 29(9): 3097 doi: 10.1021/la4001768
|
[19] |
Bai Z M, Zhang Y H. A Cu2O/Cu2S?ZnO/CdS tandem photoelectrochemical cell for self-driven solar water splitting. J Alloys Compd, 2017, 698: 133 doi: 10.1016/j.jallcom.2016.12.261
|
[20] |
Pascariu P, Homocianu M, Cojocaru C, et al. Preparation of La doped ZnO ceramic nanostructures by electrospinning-calcination method: Effect of La3+ doping on optical and photocatalytic properties. Appl Surf Sci, 2019, 476: 16 doi: 10.1016/j.apsusc.2019.01.077
|
[21] |
Sowik J, Miodyńska M, Bajorowicz B, et al. Optical and photocatalytic properties of rare earth metal-modified ZnO quantum dots. Appl Surf Sci, 2019, 464: 651 doi: 10.1016/j.apsusc.2018.09.104
|
[22] |
Bai Z M, Yan X Q, Li Y, et al. 3D-branched ZnO/CdS nanowire arrays for solar water splitting and the service safety research. Adv Energy Mater, 2016, 6(3): 1501459 doi: 10.1002/aenm.201501459
|
[23] |
Luo J, Im J H, Mayer M T, et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345(6204): 1593 doi: 10.1126/science.1258307
|
[24] |
Hou Y, Wen Z H, Cui S M, et al. Strongly coupled ternary hybrid aerogels of N-deficient porous graphitic-C3N4 nanosheets/N-doped graphene/NiFe-layered double hydroxide for solar-driven photoelectrochemical water oxidation. Nano Lett, 2016, 16(4): 2268 doi: 10.1021/acs.nanolett.5b04496
|
[25] |
Liu J, Zhang Y H, Huang Z A, et al. Photoelectrocatalytic oxidation of methane into methanol over ZnO nanowire arrays decorated with plasmonic Au nanoparticles. Nano, 2019, 14(2): 1950017 doi: 10.1142/S1793292019500176
|
[26] |
Tak Y, Hong S J, Lee J S, et al. Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J Mater Chem, 2009, 19(33): 5945 doi: 10.1039/b904993b
|
[27] |
Weng B, Yang M Q, Zhang N, et al. Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide. J Mater Chem A, 2014, 2(24): 9380 doi: 10.1039/c4ta01077a
|
[28] |
Daems N, Sheng X, Vankelecom I F J, et al. Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J Mater Chem A, 2014, 2(12): 4085 doi: 10.1039/C3TA14043A
|
[29] |
Lu Z Y, Xu W W, Zhu W, et al. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem Commun, 2014, 50(49): 6479 doi: 10.1039/C4CC01625D
|
[30] |
Liang H F, Meng F, Cabán-Acevedo M, et al. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett, 2015, 15(2): 1421 doi: 10.1021/nl504872s
|
[31] |
Xie J J, Jin R X, Li A, et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat Catal, 2018, 1(11): 889 doi: 10.1038/s41929-018-0170-x
|