<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
FENG Qian, LI Qing, QUAN Wei, PEI Xuan-mo. Overview of multiobjective particle swarm optimization algorithm[J]. Chinese Journal of Engineering, 2021, 43(6): 745-753. doi: 10.13374/j.issn2095-9389.2020.10.31.001
Citation: FENG Qian, LI Qing, QUAN Wei, PEI Xuan-mo. Overview of multiobjective particle swarm optimization algorithm[J]. Chinese Journal of Engineering, 2021, 43(6): 745-753. doi: 10.13374/j.issn2095-9389.2020.10.31.001

Overview of multiobjective particle swarm optimization algorithm

doi: 10.13374/j.issn2095-9389.2020.10.31.001
More Information
  • In the real world, the development model of optimization problems tends to be diversified and large scale. Therefore, optimization technologies are facing severe challenges in terms of nonlinearity, multi-dimensionality, intelligence, and dynamic programming. Multiobjective optimization problems have multiple conflicting objective functions, so the unique optimal solution is impossible to obtain when optimizing, and multiple objective values must be considered to obtain a compromise optimal solution set. When traditional optimization methods treat complex multiobjective problems, such as those with nonlinearity and high dimensionality, good optimization results are difficult to ensure or even infeasible. The evolutionary algorithm is a method that simulates the natural evolution process and is optimized via group search technology. It has the characteristics of strong robustness and high search efficiency. Inspired by the foraging behavior of bird flocks in nature, the particle swarm optimization algorithm has a simple implementation, fast convergence, and unique updating mechanism. With its outstanding performance in the single-objective optimization process, particle swarm optimization has been successfully extended to multiobjective optimization, and many breakthrough research achievements have been made in combinatorial optimization and numerical optimization. Consequently, the multiobjective particle swarm algorithm has far-reaching research value in theoretical research and engineering practice. As a meta-heuristic optimization algorithm, particle swarm optimization is widely used to solve multiobjective optimization problems. This paper summarized the advanced strategies of the multiobjective particle swarm optimization algorithm. First, the basic theories of multiobjective optimization and particle swarm optimization were reviewed. Second, the difficult problems involving multiobjective optimization were analyzed. Third, the achievements in recent years were summarized from five aspects: optimal particle selection strategies, diversity maintenance mechanisms, convergence improvement measures, coordination methods between diversity and convergence, and improvement schemes of iterative formulas, parametric and topological structure. Finally, the problems to be solved and the future research direction of the multiobjective particle swarm optimization algorithm were presented.

     

  • loading
  • [1]
    何小妹, 董紹華. 多目標多約束混合流水車間插單重調度問題研究. 工程科學學報, 2019, 41(11):1450

    He X M, Dong S H. Research on rush order insertion rescheduling problem under hybrid flow shop with multi-objective and multi-constraint. Chin J Eng, 2019, 41(11): 1450
    [2]
    Zadeh L A. Optimality and non-scalar-valued performance criteria. IEEE Trans Autom Control, 1963, 8(1): 59 doi: 10.1109/TAC.1963.1105511
    [3]
    Haimes Y Y, Lasdon L S, Wismer D A. On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans Syst Man Cybern, 1971, SMC-1(3): 296 doi: 10.1109/TSMC.1971.4308298
    [4]
    Charnes A, Cooper W W, Ferguson R O. Optimal estimation of executive compensation by linear programming. Manage Sci, 1955, 1(2): 138
    [5]
    玄光南, 程潤偉. 遺傳算法與工程優化. 北京: 清華大學出版社, 2004

    Xuan G N, Cheng R W. Genetic Algorithm and Engineering Optimization. Beijing: Tsinghua University Press, 2004
    [6]
    Tseng C H, Lu T W. Minimax multiobjective optimization in structural design. Int J Numer Methods Eng, 1990, 30(6): 1213 doi: 10.1002/nme.1620300609
    [7]
    劉青, 劉倩, 楊建平, 等. 煉鋼?連鑄生產調度的研究進展. 工程科學學報, 2020, 42(2):144

    Liu Q, Liu Q, Yang J P, et al. Progress of research on steelmaking?continuous casting production scheduling. Chin J Eng, 2020, 42(2): 144
    [8]
    李飛, 劉建昌, 石懷濤, 等. 基于分解和差分進化的多目標粒子群優化算法. 控制與決策, 2017, 32(3):403

    Li F, Liu J C, Shi H T, et al. Multi-objective particle swarm optimization algorithm based on decomposition and differential evolution. Control Decis, 2017, 32(3): 403
    [9]
    Zhang Y, Cheng S, Shi Y H, et al. Cost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithm. Expert Syst Appl, 2019, 137: 46 doi: 10.1016/j.eswa.2019.06.044
    [10]
    Sani S S, Manthouri M, Farivar F. A multi-objective ant colony optimization algorithm for community detection in complex networks. J Ambient Intell Human Comput, 2020, 11(1): 5 doi: 10.1007/s12652-018-1159-7
    [11]
    Qiao J F, Li F, Yang S X, et al. An adaptive hybrid evolutionary immune multi-objective algorithm based on uniform distribution selection. Inf Sci, 2020, 512: 446 doi: 10.1016/j.ins.2019.08.032
    [12]
    Lin Q Z, Ma Y P, Chen J Y, et al. An adaptive immune-inspired multi-objective algorithm with multiple differential evolution strategies. Inf Sci, 2018, 430-431: 46 doi: 10.1016/j.ins.2017.11.030
    [13]
    Kennedy J, Eberhart R. Particle swarm optimization//Proceeding of ICNN’95-IEEE International Conference on Neural Networks. Perth, 1995: 1942
    [14]
    van den Bergh F. An Analysis of Particle Swarm Optimizers [Dissertation]. Pretoria: University of Pretoria, 2001
    [15]
    Coello C A C, Lechuga M S. MOPSO: A proposal for multiple objective particle swarm optimization // Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu, 2002: 1051
    [16]
    Zhu Q L, Lin Q Z, Chen W N, et al. An external archive-guided multiobjective particle swarm optimization algorithm. IEEE Trans Cybern, 2017, 47(9): 2794 doi: 10.1109/TCYB.2017.2710133
    [17]
    Li X, Li X L, Wang K, et al. A multi-objective particle swarm optimization algorithm based on enhanced selection. IEEE Access, 2019, 7: 168091 doi: 10.1109/ACCESS.2019.2954542
    [18]
    Ali H, Khan F A. Attributed multi-objective comprehensive learning particle swarm optimization for optimal security of networks. Appl Soft Comput, 2013, 13(9): 3903 doi: 10.1016/j.asoc.2013.04.015
    [19]
    Cheng S, Chen M Y, Fleming P J. Improved multi-objective particle swarm optimization with preference strategy for optimal DG integration into the distribution system. Neurocomputing, 2015, 148: 23 doi: 10.1016/j.neucom.2012.08.074
    [20]
    García I C, Coello C A C, Arias-Monta?o A. MOPSOhv: A new hypervolume-based multi-objective particle swarm optimizer // Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014. Beijing, 2014: 266
    [21]
    Wei L X, Li X, Fan R, et al. A hybrid multiobjective particle swarm optimization algorithm based on R2 indicator. IEEE Access, 2018, 6: 14710 doi: 10.1109/ACCESS.2018.2812701
    [22]
    Wu B L, Hu W, He Z N, et al. A many-objective particle swarm optimization based on virtual Pareto front // Proceedings of the 2018 IEEE Congress on Evolutionary Computation, CEC 2018. Rio de Janeiro, 2018: 1
    [23]
    Li F, Liu J C, Tan S B, et al. R2-MOPSO: A multi-objective particle swarm optimizer based on R2-indicator and decomposition // Proceedings of the 2015 IEEE Congress on Evolutionary Computation, CEC 2015. Sendai, 2015: 3148
    [24]
    劉文穎, 謝昶, 文晶, 等. 基于小生境多目標粒子群算法的輸電網檢修計劃優化. 中國電機工程學報, 2013, 33(4):141

    Liu W Y, Xie C, Wen J, et al. Optimization of transmission network maintenance scheduling based on niche multi-objective particle swarm algorithm. Proc Chin Soc Electr Eng, 2013, 33(4): 141
    [25]
    Qu B Y, Li C, Liang J, et al. A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems. Appl Soft Comput, 2020, 86: 105886 doi: 10.1016/j.asoc.2019.105886
    [26]
    Li J P, Balazs M E, Parks G T, et al. Erratum: a species conserving genetic algorithm for multimodal function optimization. Evol Comput, 2003, 11(1): 107 doi: 10.1162/106365603321829023
    [27]
    王學武, 閔永, 顧幸生. 基于密度聚類的多目標粒子群優化算法. 華東理工大學學報(自然科學版), 2019, 45(3):449

    Wang X W, Min Y, Gu X S. Multi-objective particle swarm optimization algorithm based on density clustering. J East China Univ Sci Technol Nat Sci Ed, 2019, 45(3): 449
    [28]
    Yu H B, Tan Y, Zeng J C, et al. Surrogate-assisted hierarchical particle swarm optimization. Inf Sci, 2018, 454-455: 59 doi: 10.1016/j.ins.2018.04.062
    [29]
    Lü Z M, Wang L Q, Han Z Y, et al. Surrogate-assisted particle swarm optimization algorithm with Pareto active learning for expensive multi-objective optimization. IEEE/CAA J Autom Sin, 2019, 6(3): 838 doi: 10.1109/JAS.2019.1911450
    [30]
    Liu J C, Li F, Kong X Y, et al. Handling many-objective optimisation problems with R2 indicator and decomposition-based particle swarm optimiser. Int J Syst Sci, 2019, 50(2): 320 doi: 10.1080/00207721.2018.1552765
    [31]
    Gómez R H, Coello C A C. Improved metaheuristic based on the R2 indicator for many-objective optimization // GECCO 15- Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. New York, 2015: 679
    [32]
    李飛, 吳紫恒, 劉闞蓉, 等. 基于R2指標和目標空間分解的高維多目標粒子群優化算法. 控制與決策, https://doi.org/10.13195/j.kzyjc.2020.0113.

    Li F, Wu Z H, Liu K R, et al. R2 indicator and objective space partition based many-objective particle swarm optimizer. Control Decis, https://doi.org/10.13195/j.kzyjc.2020.0113.
    [33]
    Sun X Y, Chen Y, Liu Y P, et al. Indicator-based set evolution particle swarm optimization for many-objective problems. Soft Comput, 2016, 20(6): 2219 doi: 10.1007/s00500-015-1637-1
    [34]
    Moubayed N A, Petrovski A, McCall J. D2MOPSO: MOPSO based on decomposition and dominance with archiving using crowding distance in objective and solution spaces. Evol Comput, 2014, 22(1): 47 doi: 10.1162/EVCO_a_00104
    [35]
    Li L, Wang W L, Li W K, et al. A novel ranking-based optimal guides selection strategy in MOPSO. Procedia Comput Sci, 2016, 91: 1001 doi: 10.1016/j.procs.2016.07.135
    [36]
    Tang B W, Zhu Z X, Shin H S, et al. A framework for multi-objective optimisation based on a new self-adaptive particle swarm optimisation algorithm. Inf Sci, 2017, 420: 364 doi: 10.1016/j.ins.2017.08.076
    [37]
    Yang S X, Li M Q, Liu X H, et al. A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput, 2013, 17(5): 721 doi: 10.1109/TEVC.2012.2227145
    [38]
    Feng Q, Li Q, Chen P, et al. Multiobjective particle swarm optimization algorithm based on adaptive angle division. IEEE Access, 2019, 7: 87916 doi: 10.1109/ACCESS.2019.2925540
    [39]
    Zhan Z H, Li J J, Cao J N, et al. Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems. IEEE Trans Cybern, 2013, 43(2): 445 doi: 10.1109/TSMCB.2012.2209115
    [40]
    Depolli M, Trobec R, Filipi? B. Asynchronous master-slave parallelization of differential evolution for multi-objective optimization. Evol Comput, 2013, 21(2): 261 doi: 10.1162/EVCO_a_00076
    [41]
    Yang Y C, Zhang T X, Yi W, et al. Deployment of multistatic radar system using multi-objective particle swarm optimisation. IET Radar Sonar Navig, 2018, 12(5): 485 doi: 10.1049/iet-rsn.2017.0351
    [42]
    Luo J G, Qi Y T, Xie J C, et al. A hybrid multi-objective PSO-EDA algorithm for reservoir flood control operation. Appl Soft Comput, 2015, 34: 526 doi: 10.1016/j.asoc.2015.05.036
    [43]
    Yao G S, Ding Y S, Jin Y C, et al. Endocrine-based coevolutionary multi-swarm for multi-objective workflow scheduling in a cloud system. Soft Comput, 2017, 21(15): 4309 doi: 10.1007/s00500-016-2063-8
    [44]
    Zhang W Z, Li G Q, Zhang W W, et al. A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization. Swarm Evol Comput, 2019, 50: 100569 doi: 10.1016/j.swevo.2019.100569
    [45]
    Liang J, Guo Q Q, Yue C T, et al. A self-organizing multi-objective particle swarm optimization algorithm for multimodal multi-objective problems // International Conference on Swarm Intelligence. Shanghai, 2018: 550
    [46]
    黃佩秋, 劉建昌, 譚樹彬, 等. 混合多目標粒子群優化算法在熱精軋負荷分配優化中的應用. 控制理論與應用, 2017, 34(1):93

    Huang P Q, Liu J C, Tan S B, et al. Application of the hybrid multi-objective particle swarm optimization algorithm in load distribution of hot finishing mills. Control Theory Appl, 2017, 34(1): 93
    [47]
    Dai C, Wang Y P, Ye M. A new multi-objective particle swarm optimization algorithm based on decomposition. Inf Sci, 2015, 325: 541 doi: 10.1016/j.ins.2015.07.018
    [48]
    Qi Y T, Ma X L, Liu F, et al. MOEA/D with adaptive weight adjustment. Evol Comput, 2014, 22(2): 231 doi: 10.1162/EVCO_a_00109
    [49]
    Albaity H, Meshoul S, Kaban A. On extending quantum behaved particle swarm optimization to multiobjective context // Proceedings of the 2012 IEEE Congress on Evolutionary Computation, CEC 2012. Brisbane, 2012: 1
    [50]
    Liu T Y, Jiao L C, Ma W P, et al. Cultural quantum-behaved particle swarm optimization for environmental/economic dispatch. Appl Soft Comput, 2016, 48: 597 doi: 10.1016/j.asoc.2016.04.021
    [51]
    Pan A Q, Wang L, Guo W A, et al. A diversity enhanced multiobjective particle swarm optimization. Inf Sci, 2018, 436-437: 441 doi: 10.1016/j.ins.2018.01.038
    [52]
    Li L, Wang W L, Xu X L. Multi-objective particle swarm optimization based on global margin ranking. Inf Sci, 2016, 375: 30
    [53]
    Cheng T L, Chen M Y, Fleming P J, et al. A novel hybrid teaching learning based multi-objective particle swarm optimization. Neurocomputing, 2017, 222: 11 doi: 10.1016/j.neucom.2016.10.001
    [54]
    喻金平, 王偉, 巫光福, 等. 基于博弈機制的多目標粒子群優化算法. 計算機工程與設計, 2020, 41(4):964

    Yu J P, Wang W, Wu G F, et al. Game mechanism based multi-objective particle swarm optimization. Comput Eng Des, 2020, 41(4): 964
    [55]
    Zhang X Y, Zheng X T, Cheng R, et al. A competitive mechanism based multi-objective particle swarm optimizer with fast convergence. Inf Sci, 2018, 427: 63 doi: 10.1016/j.ins.2017.10.037
    [56]
    Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput, 2004, 8(3): 256 doi: 10.1109/TEVC.2004.826067
    [57]
    Zhan Z H, Zhang J, Li Y, et al. Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B Cybern, 2009, 39(6): 1362 doi: 10.1109/TSMCB.2009.2015956
    [58]
    Peng G, Fang Y W, Chai D, et al. Multi-objective particle swarm optimization algorithm based on sharing-learning and Cauchy mutation // Proceedings of the 35th Chinese Control Conference. Chengdu, 2016: 9155
    [59]
    張偉, 黃衛民. 基于種群分區的多策略自適應多目標粒子群算法[J/OL]. 自動化學報(2020-09-16) [2020-10-31]. http://kns.cnki.net/kcms/detail/11.2109.TP.20200915.0941.002.html.

    Zhang W, Huang W M. Multi-strategy adaptive multi-objective particle swarm optimization algorithm based on swarm partition [J/OL]. Acta Autom Sin, (2020-09-16) [2020-10-31]. http://kns.cnki.net/kcms/detail/11.2109.TP.20200915.0941.002.html.
    [60]
    楊景明, 馬明明, 車海軍, 等. 多目標自適應混沌粒子群優化算法. 控制與決策, 2015, 30(12):2168

    Yang J M, Ma M M, Che H J, et al. Multi-objective adaptive chaotic particle swarm optimization algorithm. Control Decis, 2015, 30(12): 2168
    [61]
    韓敏, 何泳. 基于高斯混沌變異和精英學習的自適應多目標粒子群算法. 控制與決策, 2016, 31(8):1372

    Han M, He Y. Adaptive multi-objective particle swarm optimization with Gaussian chaotic mutation and elite learning. Control Decis, 2016, 31(8): 1372
    [62]
    Moslemi H, Zandieh M. Comparisons of some improving strategies on MOPSO for multi-objective (r, Q) inventory system. Expert Syst Appl, 2011, 38(10): 12051 doi: 10.1016/j.eswa.2011.01.169
    [63]
    王學武, 薛立卡, 顧幸生. 三態協調搜索多目標粒子群優化算法. 控制與決策, 2015, 30(11):1945

    Wang X W, Xue L K, Gu X S. Multi-objective particle swarm optimization algorithm based on three status coordinating searching. Control Decis, 2015, 30(11): 1945
    [64]
    Peng G, Fang Y W, Peng W S, et al. Multi-objective particle optimization algorithm based on sharing-learning and dynamic crowding distance. Optik, 2016, 127(12): 5013 doi: 10.1016/j.ijleo.2016.02.045
    [65]
    Li J Z, Chen W N, Zhang J, et al. A parallel implementation of multiobjective particle swarm optimization algorithm based on decomposition // Proceedings of 2015 IEEE Symposium Series on Computational Intelligence. Cape Town, 2015: 1310
    [66]
    Xu G, Yang Y Q, Liu B B, et al. An efficient hybrid multi-objective particle swarm optimization with a multi-objective dichotomy line search. J Comput Appl Math, 2015, 280: 310 doi: 10.1016/j.cam.2014.11.056
    [67]
    Cheng S X, Zhan H, Shu Z X. An innovative hybrid multi-objective particle swarm optimization with or without constraints handling. Appl Soft Comput, 2016, 47: 370 doi: 10.1016/j.asoc.2016.06.012
    [68]
    于慧, 王宇嘉, 陳強, 等. 基于多種群動態協同的多目標粒子群算法. 電子科技, 2019, 32(10):28

    Yu H, Wang Y J, Chen Q, et al. Multi-objective particle swarm optimization based on multi-population dynamic cooperation. Electron Sci Technol, 2019, 32(10): 28
    [69]
    Liu R C, Li J X, Fan J, et al. A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization. Eur J Oper Res, 2017, 261(3): 1028 doi: 10.1016/j.ejor.2017.03.048
    [70]
    Han H G, Lu W, Zhang L, et al. Adaptive gradient multiobjective particle swarm optimization. IEEE Trans Cybern, 2018, 48(11): 3067 doi: 10.1109/TCYB.2017.2756874
    [71]
    Lin Q Z, Liu S B, Zhu Q L, et al. Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems. IEEE Trans Evol Comput, 2018, 22(1): 32 doi: 10.1109/TEVC.2016.2631279
    [72]
    Hu W, Yen G G. Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system. IEEE Trans Evol Comput, 2015, 19(1): 1 doi: 10.1109/TEVC.2013.2296151
    [73]
    Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Trans Evol Comput, 2014, 18(4): 577 doi: 10.1109/TEVC.2013.2281535
    [74]
    Wu B L, Hu W, Hu J J, et al. Adaptive multiobjective particle swarm optimization based on evolutionary state estimation. IEEE Trans Cybern, 2019 doi: 10.1109/TCYB.2019.2949204
    [75]
    Figueiredo E M N, Ludermir T B, Bastos-Filho C J A. Many objective particle swarm optimization. Inf Sci, 2016, 374: 115 doi: 10.1016/j.ins.2016.09.026
    [76]
    Lin Q Z, Li J Q, Du Z H, et al. A novel multi-objective particle swarm optimization with multiple search strategies. Eur J Oper Res, 2015, 247(3): 732 doi: 10.1016/j.ejor.2015.06.071
    [77]
    Hu W, Yen G G, Luo G C. Many-objective particle swarm optimization using two-stage strategy and parallel cell coordinate system. IEEE Trans Cybern, 2017, 47(6): 1446 doi: 10.1109/TCYB.2016.2548239
    [78]
    Meza J, Espitia H, Montenegro C, et al. MOVPSO: vortex multi-objective particle swarm optimization. Appl Soft Comput, 2017, 52: 1042 doi: 10.1016/j.asoc.2016.09.026
    [79]
    Pan A Q, Tian H J, Wang L, et al. A decomposition-based unified evolutionary algorithm for many-objective problems using particle swarm optimization. Math Problems Eng, 2016, 2016: 6761545
    [80]
    Liu X F, Zhan Z H, Gao Y, et al. Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization. IEEE Trans Evol Comput, 2019, 23(4): 587 doi: 10.1109/TEVC.2018.2875430
    [81]
    Aleti A, Moser I. A systematic literature review of adaptive parameter control methods for evolutionary algorithms. ACM Comput Surv, 2016, 49(3): 56
    [82]
    Han H G, Lu W, Qiao J F. An adaptive multiobjective particle swarm optimization based on multiple adaptive methods. IEEE Trans Cybern, 2017, 47(9): 2754 doi: 10.1109/TCYB.2017.2692385
    [83]
    夏立榮, 李潤學, 劉啟玉, 等. 基于動態層次分析的自適應多目標粒子群優化算法及其應用. 控制與決策, 2015, 30(2):215

    Xia L R, Li R X, Liu Q Y, et al. An adaptive multi-objective particle swarm optimization algorithm based dynamic AHP and its application. Control Decis, 2015, 30(2): 215
    [84]
    Liu Y X, Lu H, Cheng S, et al. An adaptive online parameter control algorithm for particle swarm optimization based on reinforcement learning // Proceedings of the 2019 IEEE Congress on Evolutionary Computation, CEC 2019. Wellington, 2019: 815
    [85]
    Hu M Q, Wu T, Weir J D. An adaptive particle swarm optimization with multiple adaptive methods. IEEE Trans Evol Comput, 2013, 17(5): 705 doi: 10.1109/TEVC.2012.2232931
    [86]
    Palafox L, Noman N, Iba H. Reverse engineering of gene regulatory networks using dissipative particle swarm optimization. IEEE Trans Evol Comput, 2013, 17(4): 577 doi: 10.1109/TEVC.2012.2218610
    [87]
    Ding S X, Chen C, Xin B, et al. A bi-objective load balancing model in a distributed simulation system using NSGA-II and MOPSO approaches. Appl Soft Comput, 2018, 63: 249 doi: 10.1016/j.asoc.2017.09.012
    [88]
    Yue C T, Qu B Y, Liang J. A multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems. IEEE Trans Evol Comput, 2018, 22(5): 805 doi: 10.1109/TEVC.2017.2754271
    [89]
    高海軍, 潘大志. 星型結構的多目標粒子群算法求解多模態多目標問題. 計算機工程與科學, 2020, 42(8):1472 doi: 10.3969/j.issn.1007-130X.2020.08.018

    Gao H J, Pan D Z. A multi-objective particle swarm optimization algorithm with star structure to solve the multi-modal multi-objective problem. Comput Eng Sci, 2020, 42(8): 1472 doi: 10.3969/j.issn.1007-130X.2020.08.018
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(1)

    Article views (3061) PDF downloads(566) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频