Citation: | LI Xiao-xuan, WANG Zeng-jie, HE Ding-yong, LIU Xuan, XUE Ji-lai. Nonequilibrium solidification microstructures and mechanical properties of selective laser-melted Cu–Sn alloy[J]. Chinese Journal of Engineering, 2021, 43(8): 1100-1106. doi: 10.13374/j.issn2095-9389.2020.10.29.006 |
[1] |
Tuncer N, Bose A. Solid-state metal additive manufacturing: A review. JOM, 2020, 72(9): 3090 doi: 10.1007/s11837-020-04260-y
|
[2] |
Tan Z, Zhang X Y, Zhou Z L, et al. Thermal effect on the microstructure of the lattice structure Cu?10Sn alloy fabricated through selective laser melting. J Alloys Compd, 2019, 787: 903 doi: 10.1016/j.jallcom.2019.02.196
|
[3] |
李昂, 劉雪峰, 俞波, 等. 金屬增材制造技術的關鍵因素及發展方向. 工程科學學報, 2019, 41(2):159
Li A, Liu X F, Yu B, et al. Key factors and developmental directions with regard to metal additive manufacturing. Chin J Eng, 2019, 41(2): 159
|
[4] |
白玉超, 楊永強, 王迪, 等. 錫青銅激光選區熔化工藝及其性能. 稀有金屬材料與工程, 2018, 47(3):1007
Bai Y C, Yang Y Q, Wang D, et al. Selective laser melting of Tin bronze alloy and its properties. Rare Met Mater Eng, 2018, 47(3): 1007
|
[5] |
山本貴文, 湯田稜也, J 長. レーザ積層造形により作製した Cu?Sn系合金造形體の金屬組織と機械的特性に及ぼす熱処理の影響. 銅と銅合金: 銅及び銅合金技術研究會誌, 2018, 57(1):137
Yamamoto T, Yuda R, Nagae T. Effect of heat treatment on microstructure and mechanical properties of Cu?Sn alloys fabricated by selective laser melting. J Jpn Inst Copper, 2018, 57(1): 137
|
[6] |
Mao Z F, Zhang D Z, Jiang J J, et al. Processing optimization, mechanical properties and microstructural evolution during selective laser melting of Cu?15Sn high-tin bronze. Mater Sci Eng A, 2018, 721: 125 doi: 10.1016/j.msea.2018.02.051
|
[7] |
Scudino S, Unterdorfer C, Prashanth K G, et al. Additive manufacturing of Cu?10Sn bronze. Mater Lett, 2015, 156: 202 doi: 10.1016/j.matlet.2015.05.076
|
[8] |
Gustmann T, dos Santos J M, Gargarella P, et al. Properties of Cu-based shape memory alloys prepared by selective laser melting. Shape Memory Superelast, 2017, 3(1): 24 doi: 10.1007/s40830-016-0088-6
|
[9] |
Yan M, Wu Y C, Chen J C, et al. Microstructure evolution in preparation of Cu?Sn contact wire for high-speed railway. Adv Mater Res, 2011, 415-417: 446 doi: 10.4028/www.scientific.net/AMR.415-417.446
|
[10] |
Ventura A P. Microstructure Evolution and Mechanical Property Development of Selective Laser Melted Cooper Alloys [Dissertation]. Bethlehem: Lehigh University, 2017
|
[11] |
Walker D C, Caley W F, Brochu M. Selective laser sintering of composite copper-tin powders. J Mater Res, 2014, 29(17): 1997 doi: 10.1557/jmr.2014.194
|
[12] |
羅繼輝. 兩相區連鑄銅錫合金的化學成分和組織性能變化規律及機理[學位論文]. 北京: 北京科技大學, 2017
Luo J H. Evolution and Mechanism of Chemical Composition, Microstructure and Properties for Two-phase Zone Continuous Casting Cu–Sn Alloy [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
|
[13] |
周鑫. 激光選區熔化微尺度熔池特性與凝固微觀組織[學位論文]. 北京: 清華大學, 2016
Zhou X. Research on Micro-scale Melt Pool Characteristics and Solidified Microstructures in Selective Laser Melting [Dissertation]. Beijing: Tsinghua University, 2016
|
[14] |
Zhang L, Liu Z Q. Inhibition of Intermetallic compounds growth at Sn?58Bi/Cu interface bearing CuZnAl memory particles(2?6 μm). J Mater Sci Mater Electron, 2020, 31(3): 2466 doi: 10.1007/s10854-019-02784-x
|
[15] |
Li X, Ivas T, Spierings A B, et al. Phase and microstructure formation in rapidly solidified Cu?Sn and Cu?Sn?Ti alloys. J Alloys Compd, 2018, 735: 1374 doi: 10.1016/j.jallcom.2017.11.237
|
[16] |
Zhai W, Wang W L, Geng D L, et al. A DSC analysis of thermodynamic properties and solidification characteristics for binary Cu?Sn alloys. Acta Mater, 2012, 60(19): 6518 doi: 10.1016/j.actamat.2012.08.013
|
[17] |
Wang Z J, Konno T J. Discontinuous precipitation with metastable ζ phase in a Cu?8.6%Sn alloy. Philos Mag, 2013, 93(8): 949 doi: 10.1080/14786435.2012.738940
|
[18] |
Yin Z Z, Sun F L, Guo M J. The fast formation of Cu?Sn intermetallic compound in Cu/Sn/Cu system by introduction heating process. Mater Lett, 2018, 215: 207 doi: 10.1016/j.matlet.2017.12.102
|
[19] |
Wang Z J, Konno T J. Comparative TEM study on as-cast ingot and nodular bainite of Cu?14.9%Sn alloy. Philos Mag, 2014, 94(4): 420 doi: 10.1080/14786435.2013.853886
|
[20] |
李想, 薛濟來, 郎光輝, 等. 鋁用石墨質陰極不同焙燒溫度下孔隙結構演化. 北京科技大學學報, 2014, 36(9):1233
Li X, Xue J L, Lang G H, et al. Porous structure evolution of graphitic cathode materials for aluminum electrolysis at various baking temperatures. J Univ Sci Technol Beijing, 2014, 36(9): 1233
|
[21] |
Wang X F, Zhao J Z, He J, et al. Microstructural features and mechanical properties induced by the spray forming and cold rolling of the Cu?13.5wt pct Sn alloy. J Mater Sci Technol, 2008, 24(5): 803
|
[22] |
Saunders N, Miodownik A P. The Cu?Sn(Copper?Tin) system. Bull Alloy Phase Diagrams, 1990, 11(3): 278 doi: 10.1007/BF03029299
|
[23] |
Fürtauer S, Li D, Cupid D, et al. The Cu–Sn phase diagram, Part I: New experimental results. Intermetallics, 2013, 34: 142 doi: 10.1016/j.intermet.2012.10.004
|
[24] |
Wang Z J, Toyohiko T J, Ma C L. Comparative TEM investigation on the precipitation behaviors in Cu?15wt%Sn alloy. Rare Met, 2013, 32(2): 139 doi: 10.1007/s12598-013-0033-1
|
[25] |
Mao Z F, Zhang D Z, Wei P T, et al. Manufacturing feasibility and forming properties of Cu?4Sn in selective laser melting. Materials, 2017, 10(4): 333 doi: 10.3390/ma10040333
|
[26] |
Ventura A P, Wade C A, Pawlikowski G, et al. Mechanical properties and microstructural characterization of Cu?4.3 Pct Sn fabricated by selective laser melting. Metall Mater Trans A, 2017, 48(1): 178 doi: 10.1007/s11661-016-3779-x
|