Citation: | QIU Shu-xing, HAN Xing, ZHANG Mei, GUO Min. Research progress and development trends in heterogeneous Fenton-like catalysts for degradation of antibiotics in wastewater[J]. Chinese Journal of Engineering, 2021, 43(4): 460-474. doi: 10.13374/j.issn2095-9389.2020.10.29.002 |
[1] |
Calvete M J F, Piccirillo G, Vinagreiro C S, et al. Hybrid materials for heterogeneous photocatalytic degradation of antibiotics. Coordin Chem Rev, 2019, 395: 63 doi: 10.1016/j.ccr.2019.05.004
|
[2] |
Brown E D, Wright G D. Antibacterial drug discovery in the resistance era. Nature, 2016, 529(7586): 336 doi: 10.1038/nature17042
|
[3] |
Gensollen T, Iyer S S, Kasper D L, et al. Antibiotic use and its consequences for the normal microbiome. Science, 2016, 352(6285): 539 doi: 10.1126/science.aad9378
|
[4] |
Aydin S, Ince B, Ince O. Assessment of anaerobic bacterial diversity and its effects on anaerobic system stability and the occurrence of antibiotic resistance genes. Bioresour Technol, 2016, 207: 332 doi: 10.1016/j.biortech.2016.01.080
|
[5] |
Ahmed M B, Zhou J L, Ngo H H, et al. Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Scie Total Environ, 2015, 532: 112 doi: 10.1016/j.scitotenv.2015.05.130
|
[6] |
Leng L J, Wei L, Xiong Q, et al. Use of microalgae based technology for the removal of antibiotics from wastewater: a review. Chemosphere, 2020, 238: 124680 doi: 10.1016/j.chemosphere.2019.124680
|
[7] |
Cuerda-Correa E M, Alexandre-Franco M F, Fernández-González C. Advanced oxidation processes for the removal of antibiotics from water: an overview. Water, 2020, 12(1): 102
|
[8] |
Wang J L, Xu L J. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Technol, 2012, 42(3): 251 doi: 10.1080/10643389.2010.507698
|
[9] |
Yu X D, Lin X C, Feng W, et al. Effective removal of tetracycline by using bio-templated synthesis of TiO2/Fe3O4 heterojunctions as a UV–fenton catalyst. Catal Lett, 2019, 149(2): 552 doi: 10.1007/s10562-018-2544-8
|
[10] |
Guo T, Wang K, Zhang G K, et al. A novel α-Fe2O3@g-C3N4 catalyst: synthesis derived from Fe-based MOF and its superior photo-Fenton performance. Appl Surf Sci, 2019, 469: 331 doi: 10.1016/j.apsusc.2018.10.183
|
[11] |
Qin Y X, Li G Y, Gao Y P, et al. Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review. Water Res, 2018, 137: 130 doi: 10.1016/j.watres.2018.03.012
|
[12] |
Nawaz M, Shahzad A, Tahir K, et al. Photo-Fenton reaction for the degradation of sulfamethoxazole using a multi-walled carbon nanotube-NiFe2O4 composite. Chem Eng J, 2020, 382: 123053 doi: 10.1016/j.cej.2019.123053
|
[13] |
Zhou J H, Ma F, Guo H J, et al. Activate hydrogen peroxide for efficient tetracycline degradation via a facile assembled carbon-based composite: synergism of powdered activated carbon and ferroferric oxide nanocatalyst. Appl Catal B Environ, 2020, 269: 118784 doi: 10.1016/j.apcatb.2020.118784
|
[14] |
Cheng M, Lai C, Liu Y, et al. Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis. Coord Chem Rev, 2018, 368: 80 doi: 10.1016/j.ccr.2018.04.012
|
[15] |
Zhu G W, Wang S, Yu Z C, et al. Application of Fe-MOFs in advanced oxidation processes. Res Chem Intermed, 2019, 45(7): 3777 doi: 10.1007/s11164-019-03820-5
|
[16] |
Wang Z H, Lai C, Qin L, et al. ZIF-8-modified MnFe2O4 with high crystallinity and superior photo-Fenton catalytic activity by Zn?O?Fe structure for TC degradation. Chem Eng J, 2020, 392: 124851 doi: 10.1016/j.cej.2020.124851
|
[17] |
Hou X H, Shi J D, Wang N N, et al. Removal of antibiotic tetracycline by metal-organic framework MIL-101(Cr) loaded nano zero-valent iron. J Mol Liq, 2020, 313: 113512 doi: 10.1016/j.molliq.2020.113512
|
[18] |
Du W, Xu Q, Jin D Q, et al. Visible-light-induced photo-Fenton process for the facile degradation of metronidazole by Fe/Si codoped TiO2. RSC Adv, 2018, 8(70): 40022 doi: 10.1039/C8RA08114J
|
[19] |
Hu Y, Chen K, Li Y L, et al. Morphology-tunable WMoO nanowire catalysts for the extremely efficient elimination of tetracycline: kinetics, mechanisms and intermediates. Nanoscale, 2019, 11(3): 1047 doi: 10.1039/C8NR08162J
|
[20] |
Nguyen X S, Zhang G K, Yang X F. Mesocrystalline Zn-doped Fe3O4 hollow submicrospheres: Formation mechanism and enhanced photo-Fenton catalytic performance. ACS Appl Mater Interfaces, 2017, 9(10): 8900 doi: 10.1021/acsami.6b16839
|
[21] |
Sharma R, Bansal S, Singhal S. Augmenting the catalytic activity of CoFe2O4 by substituting rare earth cations into the spinel structure. RSC Adv, 2016, 6(75): 71676 doi: 10.1039/C6RA14325C
|
[22] |
Vinosha P A, Xavier B, Krishnan S, et al. Investigation on zinc substituted highly porous improved catalytic activity of NiFe2O4 nanocrystal by co-precipitation method. Mater Res Bull, 2018, 101: 190 doi: 10.1016/j.materresbull.2018.01.026
|
[23] |
Casbeer E, Sharma V K, Li X Z. Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep Purif Technol, 2012, 87: 1 doi: 10.1016/j.seppur.2011.11.034
|
[24] |
Li Y J, Zhang B J, Liu X L, et al. Ferrocene-catalyzed heterogeneous Fenton-like degradation mechanisms and pathways of antibiotics under simulated sunlight: a case study of sulfamethoxazole. J Hazard Mater, 2018, 353: 26 doi: 10.1016/j.jhazmat.2018.02.034
|
[25] |
Xue Z H, Wang T, Chen B D, et al. Degradation of tetracycline with BiFeO3 prepared by a simple hydrothermal method. Materials, 2015, 8(9): 6360 doi: 10.3390/ma8095310
|
[26] |
Zhu G P, Yu X D, Xie F, et al. Ultraviolet light assisted heterogeneous Fenton degradation of tetracycline based on polyhedral Fe3O4 nanoparticles with exposed high-energy {110} facets. Appl Surf Sci, 2019, 485: 496 doi: 10.1016/j.apsusc.2019.04.239
|
[27] |
Rahmatinia Z, Rahmatinia M. Removal of the metronidazole from aqueous solution by heterogeneous electro-Fenton process using nano-Fe3O4. Data Brief, 2018, 19: 2139 doi: 10.1016/j.dib.2018.06.118
|
[28] |
?zcan A, ?zcan A A, Demirci Y, et al. Preparation of Fe2O3 modified kaolin and application in heterogeneous electro-catalytic oxidation of enoxacin. Appl Catal B Environ, 2017, 200: 361 doi: 10.1016/j.apcatb.2016.07.018
|
[29] |
Zhu Y P, Zhu R L, Xi Y F, et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review. Appl Catal B Environ, 2019, 255: 117739 doi: 10.1016/j.apcatb.2019.05.041
|
[30] |
Qi Y, Mei Y Q, Li J Q, et al. Highly efficient microwave-assisted Fenton degradation of metacycline using pine-needle-like CuCo2O4 nanocatalyst. Chem Eng J, 2019, 373: 1158 doi: 10.1016/j.cej.2019.05.097
|
[31] |
Hou L W, Wang L G, Royer S, et al. Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. J Hazard Mater, 2016, 302: 458 doi: 10.1016/j.jhazmat.2015.09.033
|
[32] |
Ma X Y, Cheng Y Q, Ge Y J, et al. Ultrasound-enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin. Ultrason Sonochem, 2018, 40: 763 doi: 10.1016/j.ultsonch.2017.08.025
|
[33] |
Ding D H, Liu C, Ji Y F, et al. Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: Identification of radicals and degradation pathway. Chem Eng J, 2017, 308: 330 doi: 10.1016/j.cej.2016.09.077
|
[34] |
Pulicharla R, Drouinaud R, Brar S K, et al. Activation of persulfate by homogeneous and heterogeneous iron catalyst to degrade chlortetracycline in aqueous solution. Chemosphere, 2018, 207: 543 doi: 10.1016/j.chemosphere.2018.05.134
|
[35] |
Wang A Q, Chen Z, Zheng Z K, et al. Remarkably enhanced sulfate radical-based photo-Fenton-like degradation of levofloxacin using the reduced mesoporous MnO@MnOx microspheres. Chem Eng J, 2020, 379: 122340 doi: 10.1016/j.cej.2019.122340
|
[36] |
Huang M J, Zhou T, Wu X H, et al. Distinguishing homogeneous-heterogeneous degradation of norfloxacin in a photochemical Fenton-like system (Fe3O4 /UV/oxalate) and the interfacial reaction mechanism. Water Res, 2017, 119: 47 doi: 10.1016/j.watres.2017.03.008
|
[37] |
Wang Y, Liang J B, Liao X D, et al. Photodegradation of sulfadiazine by goethite?oxalate suspension under UV light irradiation. Ind Eng Chem Res, 2010, 49(8): 3527 doi: 10.1021/ie9014974
|
[38] |
Pan Y W, Zhou M H, Wang Q, et al. EDTA, oxalate, and phosphate ions enhanced reactive oxygen species generation and sulfamethazine removal by zero-valent iron. J Hazard Mater, 2020, 391: 122210 doi: 10.1016/j.jhazmat.2020.122210
|
[39] |
Neyens E, Baeyens J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater, 2003, 98(1-3): 33 doi: 10.1016/S0304-3894(02)00282-0
|
[40] |
Pliego G, Zazo J A, Garcia-Mu?oz P, et al. Trends in the intensification of the Fenton process for wastewater treatment: an overview. Crit Rev Environ Sci Technol, 2015, 45(24): 2611 doi: 10.1080/10643389.2015.1025646
|
[41] |
Wang N N, Zheng T, Zhang G S, et al. A review on Fenton-like processes for organic wastewater treatment. J Environ Chem Eng, 2016, 4(1): 762 doi: 10.1016/j.jece.2015.12.016
|
[42] |
Jain B, Singh A K, Kim H, et al. Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environ Chem Lett, 2018, 16(3): 947 doi: 10.1007/s10311-018-0738-3
|
[43] |
Nidheesh P V. Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv, 2015, 5(51): 40552 doi: 10.1039/C5RA02023A
|
[44] |
Munoz M, de Pedro Z M, Casas J A, et al. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation— —a review. Appl Catal B Environ, 2015, 176-177: 249 doi: 10.1016/j.apcatb.2015.04.003
|
[45] |
Zha S X, Cheng Y, Gao Y, et al. Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin. Chem Eng J, 2014, 255: 141 doi: 10.1016/j.cej.2014.06.057
|
[46] |
Gao J S, Wu S C, Han Y L, et al. 3D mesoporous CuFe2O4 as a catalyst for photo-Fenton removal of sulfonamide antibiotics at near neutral pH. J Colloid Interface Sci, 2018, 524: 409 doi: 10.1016/j.jcis.2018.03.112
|
[47] |
Wang G, Zhao D Y, Kou F Y, et al. Removal of norfloxacin by surface Fenton system (MnFe2O4/H2O2): Kinetics, mechanism and degradation pathway. Chem Eng J, 2018, 351: 747 doi: 10.1016/j.cej.2018.06.033
|
[48] |
Tang J T, Wang J L. MOF-derived three-dimensional flower-like FeCu@C composite as an efficient Fenton-like catalyst for sulfamethazine degradation. Chem Eng J, 2019, 375: 122007 doi: 10.1016/j.cej.2019.122007
|
[49] |
Amina, Si X Y, Wu K, et al. Mechanistic insights into the reactive radicals-assisted degradation of sulfamethoxazole via calcium peroxide activation by manganese-incorporated iron oxide–graphene nanocomposite: Formation of radicals and degradation pathway. Chem Eng J, 2020, 384: 123360 doi: 10.1016/j.cej.2019.123360
|
[50] |
Liu Y, Fan Q, Wang J L. Zn-Fe-CNTs catalytic in situ generation of H2O2 for Fenton-like degradation of sulfamethoxazole. J Hazard Mater, 2018, 342: 166 doi: 10.1016/j.jhazmat.2017.08.016
|
[51] |
Gao Y J, Champagne P, Blair D, et al. Activated persulfate by iron-based materials used for refractory organics degradation: a review. Water Sci Technol, 2020, 81(5): 853 doi: 10.2166/wst.2020.190
|
[52] |
Liang C J, Guo Y Y. Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate. Environ Sci Technol, 2010, 44(21): 8203 doi: 10.1021/es903411a
|
[53] |
Liu Y, Guo H G, Zhang Y L, et al. Heterogeneous activation of peroxymonosulfate by sillenite Bi25FeO40: Singlet oxygen generation and degradation for aquatic levofloxacin. Chem Eng J, 2018, 343: 128 doi: 10.1016/j.cej.2018.02.125
|
[54] |
Xiao S, Cheng M, Zhong H, et al. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: a review. Chem Eng J, 2020, 384: 123265 doi: 10.1016/j.cej.2019.123265
|
[55] |
Wu D L, Liu Y X, Zhang Z Y, et al. Pyrite-enhanced degradation of chloramphenicol by low concentrations of H2O2. Water Sci Technol, 2015, 72(2): 180 doi: 10.2166/wst.2015.202
|
[56] |
Munoz M, Conde J, de Pedro Z M, et al. Antibiotics abatement in synthetic and real aqueous matrices by H2O2/natural magnetite. Catal Today, 2018, 313: 142 doi: 10.1016/j.cattod.2017.10.032
|
[57] |
Sun F W, Liu H B, Wang H L, et al. A novel discovery of a heterogeneous Fenton-like system based on natural siderite: A wide range of pH values from 3 to 9. Sci Total Environ, 2020, 698: 134293 doi: 10.1016/j.scitotenv.2019.134293
|
[58] |
Kamagate M, Assadi A A, Kone T, et al. Use of laterite as a sustainable catalyst for removal of fluoroquinolone antibiotics from contaminated water. Chemosphere, 2018, 195: 847 doi: 10.1016/j.chemosphere.2017.12.165
|
[59] |
Ayala-Durán S C, Hammer P, Nogueira R F P. Surface composition and catalytic activity of an iron mining residue for simultaneous degradation of sulfonamide antibiotics. Environ Sci Pollut Res, 2020, 27(2): 1710 doi: 10.1007/s11356-019-06662-1
|
[60] |
Gr?ssinger R, Duong G V, Sato-Turtelli R. The physics of magnetoelectric composites. J Magn Magn Mater, 2008, 320(14): 1972 doi: 10.1016/j.jmmm.2008.02.031
|
[61] |
Sharma R, Kumar V, Bansal S, et al. Assortment of magnetic nanospinels for activation of distinct inorganic oxidants in photo-Fenton’s process. J Mol Catal A Chem, 2015, 402: 53 doi: 10.1016/j.molcata.2015.03.009
|
[62] |
Amiri M, Eskandari K, Salavati-Niasari M. Magnetically retrievable ferrite nanoparticles in the catalysis application. Adv Colloid Interface Sci, 2019, 271: 101982 doi: 10.1016/j.cis.2019.07.003
|
[63] |
Chaibakhsh N, Moradi-Shoeili Z. Enzyme mimetic activities of spinel substituted nanoferrites (MFe2O4): a review of synthesis, mechanism and potential applications. Mater Sci Eng C, 2019, 99: 1424 doi: 10.1016/j.msec.2019.02.086
|
[64] |
韓星, 閆治開, 陳婷, 等. 從腐泥土型紅土鎳礦制備共摻雜MgFe2O4物相轉化規律及催化性能. 工程科學學報, 2019, 41(5):600
Han X, Yan Z K, Chen T, et al. Phase transformation and catalytic performance of metal-doped MgFe2O4 prepared from saprolite laterite. Chin J Eng, 2019, 41(5): 600
|
[65] |
劉雅賢, 陳婷, 韓星, 等. Cu摻雜對硫化鎳精礦制備高效異相類Fenton催化劑(Ni, Mg, Cu)Fe2O4的影響. 工程科學學報, https://doi.org/10.13374/j.issn2095-9389.2020.06.18.002
Liu Y X, Chen T, Han X, et al. Copper doping effect on the preparation of efficient heterogeneous Fenton-like catalyst (Ni, Mg, Cu)Fe2O4 from nickel sulfide concentrate. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2020.06.18.002
|
[66] |
Magnago L B, Rocha A K S, Pegoretti V C B, et al. NiFe2O4 synthesized from nickel recycled of spent Ni-MH batteries and their applications as a catalyst in a photo-Fenton process and as an electrochemical pseudocapacitor. Ionics, 2019, 25(5): 2361 doi: 10.1007/s11581-018-2623-2
|
[67] |
Cao Z B, Zhang J, Zhou J Z, et al. Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye. J Environ Manage, 2017, 193: 146 doi: 10.1016/j.jenvman.2016.11.039
|
[68] |
Li Y, Chen D, Fan S S, et al. Enhanced visible light assisted Fenton-like degradation of dye via metal-doped zinc ferrite nanosphere prepared from metal-rich industrial wastewater. J Taiwan Inst Chem Eng, 2019, 96: 185 doi: 10.1016/j.jtice.2018.11.006
|
[69] |
Han X, Chen T, Liu Y X, et al. Novel efficient heterogeneous visible light assisted Fenton-like catalyst (Ni, Mg, Cu)Fe2O4 from nickel sulfide concentrate. Mater Lett, 2019, 253: 1 doi: 10.1016/j.matlet.2019.06.014
|
[70] |
Han X, Liu S Y, Huo X T, et al. Facile and large-scale fabrication of (Mg, Ni)(Fe, Al)2O4 heterogeneous photo-Fenton-like catalyst from saprolite laterite ore for effective removal of organic contaminants. J Hazard Mater, 2020, 392: 122295 doi: 10.1016/j.jhazmat.2020.122295
|