Citation: | WANG Huai-bin, LI Yang, WANG Qin-zheng, DU Zhi-ming, FENG Xu-ning. Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse[J]. Chinese Journal of Engineering, 2021, 43(5): 663-675. doi: 10.13374/j.issn2095-9389.2020.10.27.002 |
[1] |
國務院辦公廳. 新能源汽車產業發展規劃(2021—2035年)[EB/OL]. 中國政府網 (2020-11-02) [2020-10-20]. http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm
General Office of the State Council of the People’s Republic of China. Development Plan of New Energy Automobile Industry (2021—2035)[EB/OL]. www.gov.cn (2020-11-02)[2020-10-20]. http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm
|
[2] |
Mao B B, Huang P F, Chen H D, et al. Self-heating reaction and thermal runaway criticality of the lithiumion battery. Int J Heat Mass Transfer, 2020, 149: 119178 doi: 10.1016/j.ijheatmasstransfer.2019.119178
|
[3] |
王爽, 杜志明, 張澤林, 等. 鋰離子電池安全性研究進展. 工程科學學報, 2018, 40(8):901
Wang S, Du Z M, Zhang Z L, et al. Research progress on safety of lithium-ion batteries. Chin J Eng, 2018, 40(8): 901
|
[4] |
Fergus J W. Recent developments in cathode materials for lithium ion batteries. J Power Sources, 2010, 195(4): 939 doi: 10.1016/j.jpowsour.2009.08.089
|
[5] |
孫艷霞, 周園, 申月, 等. 動力型鋰離子電池富鋰三元正極材料研究進展. 化學通報, 2017, 80(1):34
Sun Y X, Zhou Y, Shen Y, et al. Lithium rich ternary cathode materials for dynamical type lithium ion battery. Chemistry, 2017, 80(1): 34
|
[6] |
王亞平, 胡淑婉, 曹峰. 鋰離子電池正極材料研究進展. 電源技術, 2017, 41(4):638 doi: 10.3969/j.issn.1002-087X.2017.04.043
Wang Y P, Hu S W, Cao F. Research prospect of cathode materials for lithium ion battery. Power Technol, 2017, 41(4): 638 doi: 10.3969/j.issn.1002-087X.2017.04.043
|
[7] |
Feng X N, Zheng S Q, Ren D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl Energy, 2019, 246: 53 doi: 10.1016/j.apenergy.2019.04.009
|
[8] |
Feng X N, Ouyang M G, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater, 2018, 10: 246
|
[9] |
Huang P F, Ping P, Li K, et al. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Appl Energy, 2016, 183: 659 doi: 10.1016/j.apenergy.2016.08.160
|
[10] |
B?rger A, Mertens J, Wenzl H. Thermal runaway and thermal runaway propagation in batteries: What do we talk about? J Energy Storage, 2019, 24: 100649 doi: 10.1016/j.est.2019.01.012
|
[11] |
Lopez C F, Jeevarajan J A, Mukherjee P P. Experimental analysis of thermal runaway and propagation in lithium-ion battery modules. J Electrochem Soc, 2015, 162(9): A1905 doi: 10.1149/2.0921509jes
|
[12] |
Gao S, Lu L G, Ouyang M G, et al. Experimental study on module-to-module thermal runaway-propagation in a battery pack. J Electrochem Soc, 2019, 166(10): A2065
|
[13] |
Jiang Z Y, Qu Z G, Zhang J F, et al. Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy. Appl Energy, 2020, 268: 115007 doi: 10.1016/j.apenergy.2020.115007
|
[14] |
Feng X N, Fang M, He X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sources, 2014, 255: 294
|
[15] |
Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources, 2003, 113(1): 81 doi: 10.1016/S0378-7753(02)00488-3
|
[16] |
Richard M N, Dahn J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental. J Electrochem Soc, 1999, 146(6): 2068 doi: 10.1149/1.1391893
|
[17] |
Venugopal G. Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries. J Power Sources, 2001, 101(2): 231 doi: 10.1016/S0378-7753(01)00782-0
|
[18] |
Wang H Y, Tang A D, Huang K L. Oxygen evolution in overcharged LixNi1/3Co1/3Mn1/3O2 electrode and its thermal analysis kinetics. Chin J Chem, 2011, 29(8): 1583
|
[19] |
Zhang Y J, Wang H W, Li W F, et al. Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries. eTransportation, 2019, 2: 100031 doi: 10.1016/j.etran.2019.100031
|
[20] |
Larsson F, Bertilsson S, Furlani M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing. J Power Sources, 2018, 373: 220 doi: 10.1016/j.jpowsour.2017.10.085
|
[21] |
Peng Y, Yang L Z, Ju X Y, et al. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode. J Hazard Mater, 2020, 381: 120916
|
[22] |
Li H, Duan Q L, Zhao C P, et al. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode. J Hazard Mater, 2019, 375: 241 doi: 10.1016/j.jhazmat.2019.03.116
|
[23] |
Wang H B, Du Z M, Rui X Y, et al. A comparative analysis on thermal runaway behavior of Li (NixCoyMnz) O2 battery with different nickel contents at cell and module level. J Hazard Mater, 2020, 393: 122361 doi: 10.1016/j.jhazmat.2020.122361
|
[24] |
Wilke S, Schweitzer B, Khateeb S, et al. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study. J Power Sources, 2017, 340: 51 doi: 10.1016/j.jpowsour.2016.11.018
|
[25] |
Yuan C C, Wang Q S, Wang Y, et al. Inhibition effect of different interstitial materials on thermal runaway propagation in the cylindrical lithium-ion battery module. Appl Therm Eng, 2019, 153: 39 doi: 10.1016/j.applthermaleng.2019.02.127
|
[26] |
Tao C F, Li G Y, Zhao J B, et al. The investigation of thermal runaway propagation of lithium-ion batteries under different vertical distances. J Therm Anal Calorim, 2020, 142(4): 1523 doi: 10.1007/s10973-020-09274-x
|
[27] |
Wang Z, Wang J. Investigation of external heating-induced failure propagation behaviors in large-size cell modules with different phase change materials. Energy, 2020, 204: 117946
|
[28] |
Niu H C, Chen C X, Ji D, et al. Thermal-runaway propagation over a linear cylindrical battery module. Fire Technol, 2020, 56(6): 2491 doi: 10.1007/s10694-020-00976-0
|
[29] |
Wang H B, Du Z M, Liu L, et al. Study on the thermal runaway and its propagation of lithium-ion batteries under low pressure. Fire Technol, 2020, 56(6): 2427 doi: 10.1007/s10694-020-00963-5
|
[30] |
Huang Z H, Zhao C P, Li H, et al. Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes. Energy, 2020, 205: 117906 doi: 10.1016/j.energy.2020.117906
|
[31] |
馮旭寧. 車用鋰離子動力電池熱失控誘發與擴展機理、建模與防控[學位論文]. 北京: 清華大學, 2016
Feng X N. Thermal Runaway Initiation and Propagation of Lithium-Ion Traction Battery for Electric Vehicle: test, Modeling and Prevention [Dissertation]. Beijing: Tsinghua University, 2016
|
[32] |
Mao B B, Chen H D, Cui Z X, et al. Failure mechanism of the lithium ion battery during nail penetration. Int J Heat Mass Transfer, 2018, 122: 1103 doi: 10.1016/j.ijheatmasstransfer.2018.02.036
|
[33] |
Feng X N, Ren D S, He X M, et al. Mitigating thermal runaway of lithium-ion batteries. Joule, 2020, 4(4): 743
|
[34] |
Wang Q S, Mao B B, Stoliarov S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci, 2019, 73: 95 doi: 10.1016/j.pecs.2019.03.002
|
[35] |
Liu X, Ren D S, Hsu H, et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule, 2018, 2(10): 2047 doi: 10.1016/j.joule.2018.06.015
|
[36] |
Feng X N, Sun J, Ouyang M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sources, 2015, 275: 261 doi: 10.1016/j.jpowsour.2014.11.017
|