Citation: | WEI Meng, WANG Qiao, YE Min, LI Jia-bo, XU Xin-xin. An indirect remaining useful life prediction of lithium-ion batteries based on a NARX dynamic neural network[J]. Chinese Journal of Engineering, 2022, 44(3): 380-388. doi: 10.13374/j.issn2095-9389.2020.10.22.005 |
[1] |
Guo P Y, Cheng Z, Yang L. A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction. J Power Sources, 2019, 412: 442 doi: 10.1016/j.jpowsour.2018.11.072
|
[2] |
Tian H X, Qin P L, Li K, et al. A review of the state of health for lithium-ion batteries: Research status and suggestions. J Clean Prod, 2020, 261: 120813 doi: 10.1016/j.jclepro.2020.120813
|
[3] |
Xiong R, Zhang Y Z, Wang J, et al. Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles. IEEE Trans Veh Technol, 2019, 68(5): 4110 doi: 10.1109/TVT.2018.2864688
|
[4] |
Xue Q, Shen S Q, Li G, et al. Remaining useful life prediction for lithium-ion batteries based on capacity estimation and box-cox transformation. IEEE Trans Veh Technol, 2020, 69(12): 14765 doi: 10.1109/TVT.2020.3039553
|
[5] |
焦自權, 范興明, 張鑫, 等. 基于改進粒子濾波算法的鋰離子電池狀態跟蹤與剩余使用壽命預測方法. 電工技術學報, 2020, 35(18):3979
Jiao Z Q, Fan X M, Zhang X, et al. State tracking and remaining useful life predictive method of Li-ion battery based on improved particle filter algorithm. Trans China Electrotech Soc, 2020, 35(18): 3979
|
[6] |
章軍輝, 李慶, 陳大鵬, 等. 基于快速SR-UKF的鋰離子動力電池SOC聯合估計. 工程科學學報, 2021, 43(7):976
Zhang J H, Li Q, Chen D P, et al. Real-time states Co-estimation algorithm for Li-ion power batteries based on fast square-root unscented kalman filters. Chin J Eng, 2021, 43(7): 976
|
[7] |
Harper G, Sommerville R, Kendrick E, et al. Recycling lithium-ion batteries from electric vehicles. Nature, 2019, 575(7781): 75 doi: 10.1038/s41586-019-1682-5
|
[8] |
?eruga D, Gosar A, Sweeney C A, et al. Continuous modelling of cyclic ageing for lithium-ion batteries. Energy, 2021, 215: 119079 doi: 10.1016/j.energy.2020.119079
|
[9] |
Wu Y T, Xue Q, Shen J W, et al. State of health estimation for lithium-ion batteries based on healthy features and long short-term memory. IEEE Access, 2020, 8: 28533 doi: 10.1109/ACCESS.2020.2972344
|
[10] |
Tian J Q, Xu R L, Wang Y J, et al. Capacity attenuation mechanism modeling and health assessment of lithium-ion batteries. Energy, 2021, 221: 119682 doi: 10.1016/j.energy.2020.119682
|
[11] |
Jia J F, Liang J Y, Shi Y H, et al. SOH and RUL prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators. Energies, 2020, 13(2): 375 doi: 10.3390/en13020375
|
[12] |
Yang W S, Yao Q F, Ye K J, et al. Empirical mode decomposition and temporal convolutional networks for remaining useful life estimation. Int J Parallel Program, 2020, 48(1): 61 doi: 10.1007/s10766-019-00650-1
|
[13] |
李練兵, 季亮, 祝亞尊, 等. 等效循環電池組剩余使用壽命預測. 工程科學學報, 2020, 42(6):796
Li L B, Ji L, Zhu Y Z, et al. Investigation of RUL prediction of lithium-ion battery equivalent cycle battery pack. Chin J Eng, 2020, 42(6): 796
|
[14] |
馬彥, 陳陽, 張帆, 等. 基于擴展H∞粒子濾波算法的動力電池壽命預測方法. 機械工程學報, 2019, 55(20):36
Ma Y, Chen Y, Zhang F, et al. Remaining useful life prediction of power battery based on extend h∞ particle filter algorithm. J Mech Eng, 2019, 55(20): 36
|
[15] |
李玥鋅, 劉淑杰, 高斯博, 等. 基于維納過程的鋰離子電池剩余壽命預測. 大連理工大學學報, 2017, 57(2):126 doi: 10.7511/dllgxb201702003
Li Y X, Liu S J, Gao S B, et al. Prediction of lithium-ion battery's remaining useful life based on Wiener process. J Dalian Univ Technol, 2017, 57(2): 126 doi: 10.7511/dllgxb201702003
|
[16] |
Lyu C, Lai Q Z, Ge T F, et al. A lead-acid battery's remaining useful life prediction by using electrochemical model in the Particle Filtering framework. Energy, 2017, 120: 975 doi: 10.1016/j.energy.2016.12.004
|
[17] |
林慧龍, 李賽. 基于粒子濾波的鋰離子電池剩余使用壽命預測. 科學技術與工程, 2017, 17(29):296 doi: 10.3969/j.issn.1671-1815.2017.29.043
Lin H L, Li S. Remaining useful life prediction of the lithium-ion batteries based on particle filter algorithm. Sci Technol Eng, 2017, 17(29): 296 doi: 10.3969/j.issn.1671-1815.2017.29.043
|
[18] |
Xian W M, Long B, Li M, et al. Prognostics of lithium-ion batteries based on the verhulst model, particle swarm optimization and particle filter. IEEE Trans Instrum Meas, 2014, 63(1): 2 doi: 10.1109/TIM.2013.2276473
|
[19] |
曲杰, 趙小涵, 甘偉. 基于小波降噪-支持矢量機的鋰離子電池剩余使用壽命預測模型. 機械設計與制造工程, 2020, 49(1):81
Qu J, Zhao X H, Gan W. The remaining life prediction model of lithium battery based on wavelet noise reduction and support vector machine. Mach Des Manuf Eng, 2020, 49(1): 81
|
[20] |
Wu J, Zhang C B, Chen Z H. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. Appl Energy, 2016, 173: 134 doi: 10.1016/j.apenergy.2016.04.057
|
[21] |
Wang X C, Zhao J, Li Q Q, et al. A hybrid model for prediction in asphalt pavement performance based on support vector machine and grey relation analysis. J Adv Transp, 2020, 2020: 1
|
[22] |
陳則王, 李福勝, 林婭, 等. 基于GA-ELM的鋰離子電池RUL間接預測方法. 計量學報, 2020, 41(6):735 doi: 10.3969/j.issn.1000-1158.2020.06.17
Chen Z W, Li F S, Lin Y, et al. Indirect prediction method of RUL for lithium-ion battery based on GA-ELM. Acta Metrol Sin, 2020, 41(6): 735 doi: 10.3969/j.issn.1000-1158.2020.06.17
|
[23] |
Zhou Y P, Huang M H. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model. Microelectron Reliab, 2016, 65: 265 doi: 10.1016/j.microrel.2016.07.151
|
[24] |
Liu D T, Luo Y, Liu J, et al. Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm. Neural Comput Appl, 2014, 25(3-4): 557 doi: 10.1007/s00521-013-1520-x
|
[25] |
Saha B, Goebel K. Battery data set: NASA ames prognostics data repository [DB/OL]. NASA Ames Research Center (2007)[2020-10-22].https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository
|
[26] |
龐曉瓊, 王竹晴, 曾建潮, 等. 基于PCA-NARX的鋰離子電池剩余使用壽命預測. 北京理工大學學報, 2019, 39(4):406
Pang X Q, Wang Z Q, Zeng J C, et al. Prediction for the remaining useful life of lithium-ion battery based on PCA-NARX. Trans Beijing Inst Technol, 2019, 39(4): 406
|