Citation: | YUAN Bao-hui, LIU Jian-hua, ZHOU Hai-long, HUANG Ji-hong, ZHANG Shuo, SHEN Zhi-peng. Refining effect of IF steel produced by RH forced and natural decarburization process[J]. Chinese Journal of Engineering, 2021, 43(8): 1107-1115. doi: 10.13374/j.issn2095-9389.2020.10.10.002 |
[1] |
王新華. 高品質冷軋薄板鋼中非金屬夾雜物控制技術. 鋼鐵, 2013, 48(9):1
Wang X H. Non-metallic inclusion control technology for high quality cold rolled steel sheets. Iron Steel, 2013, 48(9): 1
|
[2] |
孫群, 林洋, 李偉東. RH精煉脫碳與夾雜物控制. 北京科技大學學報, 2011(S1):142
Sun Q, Lin Y, Li W D. Decarburization treatment and inclusion control during RH refining. J Univ Sci Technol Beijing, 2011(S1): 142
|
[3] |
岳峰, 崔衡, 李朋歡, 等. RH冶煉超低碳鋼的最優工藝研究. 北京科技大學學報, 2009(S1):53
Yue F, Cui H, Li P H, et al. Study on the optimum process of refining ULC steel by RH degasser. J Univ Sci Technol Beijing, 2009(S1): 53
|
[4] |
馬煥珣, 王新華, 黃福祥, 等. 脫氧工藝對低碳鋁鎮靜鋼潔凈度的影響. 鋼鐵, 2016, 51(1):19
Ma H X, Wang X H, Huang F X, et al. Effect of deoxidation technology on cleanliness of low carbon aluminum killed steel. Iron Steel, 2016, 51(1): 19
|
[5] |
苑鵬, 李海波, 羅衍昭, 等. 超低碳鋼頂渣氧化性對鋼液潔凈度的影響. 工程科學學報, 2016, 38(12):1702
Yuan P, Li H B, Luo Y Z, et al. Influence of ladle slag oxidability on the cleanliness of ultra low carbon steel. Chin J Eng, 2016, 38(12): 1702
|
[6] |
舒宏富, 劉瀏, 劉學華. 鋼包頂渣改質對IF鋼夾雜物的影響. 煉鋼, 2016, 32(3):55
Shu H F, Liu L, Liu X H. Influence of slag denaturalization on inclusions in IF steel. Steelmaking, 2016, 32(3): 55
|
[7] |
彭著剛, 齊江華, 楊成威. 頂渣改質工藝對IF鋼夾雜物的影響. 工程科學學報, 2018(S1):174
Peng Z G, Qi J H, Yang C W. Influence of slag denaturalization on inclusions in IF steel. Chin J Eng, 2018(S1): 174
|
[8] |
王敏, 包燕平, 崔衡, 等. RH純循環對Ti-IF鋼潔凈度的影響. 北京科技大學學報, 2011, 33(12):1448
Wang M, Bao Y P, Cui H, et al. Effect of RH pure circulation on the cleanness of titanium stabilized interstitial-free(Ti-IF) steel. J Univ Sci Technol Beijing, 2011, 33(12): 1448
|
[9] |
崔衡, 陳斌, 王敏, 等. RH精煉過程中IF鋼潔凈度控制. 北京科技大學學報, 2011(S1):147
Cui H, Chen B, Wang M, et al. Cleanliness control of IF steel during the RH refining process. J Univ Sci Technol Beijing, 2011(S1): 147
|
[10] |
李怡宏, 包燕平, 申小維, 等. 300 t鋼包內DC06鋼的夾雜物控制研究. 煉鋼, 2014, 30(2):38
Li Y H, Bao Y P, Shen X W, et al. Inclusions control study of DC06 steel in 300 t ladle. Steelmaking, 2014, 30(2): 38
|
[11] |
崔衡, 田恩華, 陳斌, 等. RH真空精煉后IF鋼鎮靜工藝的潔凈度研究. 工程科學學報, 2014(S1):32
Cui H, Tian E H, Chen B, et al. Cleanliness study of IF steel by holding in ladles after RH vacuum process. Chin J Eng, 2014(S1): 32
|
[12] |
崔愛民, 王建偉, 劉柏松, 等. RH精煉自然脫碳和TOP強制脫碳效果的對比研究. 首鋼科技, 2010(4):24
Cui A M, Wang J W, Liu B S, et al. The comparative study on the natural decarburization effect by RH and the forced decarburization effect by RH-TOP. Shou Gang Sci Technol, 2010(4): 24
|
[13] |
李朋歡, 包燕平, 岳峰, 等. RH脫碳過程中極低氧鋼水的碳氧反應機理. 北京科技大學學報, 2011, 33(7):823
Li P H, Bao Y P, Yue F, et al. Mechanism of carbon and oxygen reaction in RH decarburization of ultra low oxygen steel. J Univ Sci Technol Beijing, 2011, 33(7): 823
|
[14] |
劉柏松, 李本海, 朱國森, 等. 常規RH和RH-TOP工藝精煉IF鋼試驗研究. 鋼鐵, 2010, 45(8):33
Liu B S, Li B H, Zhu G S, et al. Experimental investigation on conventional RH and RH-TOP refining process for IF steel production. Iron Steel, 2010, 45(8): 33
|
[15] |
李大明, 張文輝, 林立平, 等. RH頂吹氧技術在武鋼第二煉鋼廠的應用. 煉鋼, 2007, 23(6):5 doi: 10.3969/j.issn.1002-1043.2007.06.002
Li D M, Zhang W H, Lin L P, et al. Application of RH oxygen top-blowing technology in No.2 Steel-making Plant, WISCO. Steelmaking, 2007, 23(6): 5 doi: 10.3969/j.issn.1002-1043.2007.06.002
|
[16] |
袁保輝, 劉建華, 周海龍, 等. 高海拔RH精煉裝置真空脫碳工藝優化研究. 煉鋼, 2020, 36(4):31
Yuan B H, Liu J H, Zhou H L, et al. The vacuum decarburization process optimization study of high altitude RH refining equipment. Steelmaking, 2020, 36(4): 31
|
[17] |
劉猛, 白峰青, 陳少帥, 等. 水源判別標準集在礦井防治水中的應用. 礦業工程研究, 2014, 29(3):30
Liu M, Bai F Q, Chen S S, et al. Application of water irrush source standard set in mine water prevention. Miner Eng Res, 2014, 29(3): 30
|
[18] |
徐敏, 劉中財, 嚴曉, 等. 容量增量內阻一致性在線檢測方法. 儲能科學與技術, 2019, 8(6):1197
Xu M, Liu Z C, Yan X, et al. Online detection method for incremental capacity internal resistance consistency. Energy Storage Sci Technol, 2019, 8(6): 1197
|
[19] |
Hong J C, Wang Z P, Liu P. Big-data-based thermal runaway prognosis of battery systems for electric vehicles. Energies, 2017, 10(7): 919 doi: 10.3390/en10070919
|
[20] |
段富春, 吳華章. 薄板坯連鑄超低碳鋼生產實踐. 工業加熱, 2007, 36(6):73 doi: 10.3969/j.issn.1002-1639.2007.06.027
Duan F C, Wu H Z. The production practice of ultra-low-carbon steel in thin slab continuous casting. Ind Heat, 2007, 36(6): 73 doi: 10.3969/j.issn.1002-1639.2007.06.027
|
[21] |
宋滿堂, 李明光, 于華財. 超低碳鋼薄板坯連鑄鋼水精煉工藝的研究. 煉鋼, 2009, 25(3):8
Song M T, Li M G, Yu H C. Research on refining process of ultra-low-carbon steel for thin slab casting. Steelmaking, 2009, 25(3): 8
|
[22] |
沈昶, 宋超, 舒宏富, 等. CSP批量生產超低碳鋼的RH-LF雙聯工藝研究. 鋼鐵, 2008, 43(5):26
Shen C, Song C, Shu H F, et al. Research of ULC steel production route combining RH-LF refining and CSP line. Iron Steel, 2008, 43(5): 26
|
[23] |
梁英教, 車蔭昌. 無機物熱力學數據手冊. 沈陽: 東北大學出版社, 1993
Liang Y J, Che Y C. Handle of Inorganic Thermody Namic Data. Shenyang: Northeast University Press, 1993
|
[24] |
成國光, 趙沛, 徐學祿, 等. 真空下鋼液脫氮工藝研究. 鋼鐵, 1999, 34(1):16 doi: 10.3321/j.issn:0449-749X.1999.01.005
Cheng G G, Zhao P, Xu X L, et al. Process of vacuum denitrogenation of steel. Iron Steel, 1999, 34(1): 16 doi: 10.3321/j.issn:0449-749X.1999.01.005
|
[25] |
曹盛. 超低氮鋼轉爐終點氮含量控制. 河北冶金, 2015(10):14
Cao S. Control of end nitrogen content in smelting of ultra-low nitrogen steel with converter. Hebei Metall, 2015(10): 14
|
[26] |
Kitamura T, Miyamoto K, Tsujino R, et al. Mathematical model for nitrogen desorption and decarburization reaction in vacuum degasser. ISIJ Int, 1996, 36(4): 395 doi: 10.2355/isijinternational.36.395
|
[27] |
Wang M, Bao Y P, Cui H, et al. The composition and morphology evolution of oxide inclusions in Ti-bearing ultra low-carbon steel melt refined in the RH process. ISIJ Int, 2010, 50(11): 1606 doi: 10.2355/isijinternational.50.1606
|
[28] |
唐復平, 常桂華, 栗紅, 等. 超低碳鋼鋼中夾雜物的研究. 鋼鐵, 2007, 42(1):20
Tang F P, Chang G H, Li H, et al. Inclusions in ultra-low carbon steel. Iron Steel, 2007, 42(1): 20
|
[29] |
Dekkers R, Blanpain B, Wollants P, et al. A morphological comparison between inclusions in aluminium killed steels and deposits in submerged entry nozzle. Steel Res Int, 2003, 74(6): 351 doi: 10.1002/srin.200300197
|
[30] |
王敏, 包燕平, 楊荃. 鈦合金化過程對鋼液潔凈度的影響. 北京科技大學學報, 2013, 35(6):725
Wang M, Bao Y P, Yang Q. Effect of Ferro-titanium alloying process on steel cleanness. J Univ Sci Technol Beijing, 2013, 35(6): 725
|
[31] |
潘明, 于會香, 季晨曦, 等. RH精煉過程中吹氧量對IF鋼潔凈度的影響. 工程科學學報, 2020, 42(7):846
Pan M, Yu H X, Ji C X, et al. Effect of oxygen blowing during RH treatment on the cleanliness of IF steel. Chin J Eng, 2020, 42(7): 846
|
[32] |
高帥, 王敏, 郭建龍, 等. IF鋼鑄坯厚度方向夾雜物分布及潔凈度評估. 工程科學學報, 2020, 42(2):194
Gao S, Wang M, Guo J L, et al. Evaluation of cleanliness and distribution of inclusions in the thickness direction of interstitial free(IF) steel slabs. Chin J Eng, 2020, 42(2): 194
|
[33] |
Stone R P, Jr. Figas R M, Branion R V. Productivity improvements in steelmaking via sensor-based steelmaking process control. Iron Steel Technol, 2006, 3(1): 31
|