Citation: | ZHAO Chun-yang, WANG En-hui, HOU Xin-mei. Research progress on the oxidation mechanism and kinetics of a SiC semiconductor with different crystal surfaces[J]. Chinese Journal of Engineering, 2021, 43(5): 594-602. doi: 10.13374/j.issn2095-9389.2020.10.10.001 |
[1] |
Chung G Y, Tin C C, Williams J R, et al. Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide. IEEE Electron Device Lett, 2001, 22(4): 176 doi: 10.1109/55.915604
|
[2] |
Simonka V, H?ssinger A, Weinbub J, et al. Growth rates of dry thermal oxidation of 4H-silicon carbide. J Appl Phys, 2016, 120(13): 135705 doi: 10.1063/1.4964688
|
[3] |
Madjour K. Silicon carbide market update: From discrete devices to modules [R/OL]. In PCIM Europe (2014-05-21) [2020-03-07]. https://apps.richardsonrfpd.com/Mktg/Tech-Hub/pdfs/YOLEPCIM_2014_SiC_Market_ARROW_KMA_Yole-final.pdf.
|
[4] |
馬后成, 周曉敏, 高大威. 基于SiC功率器件的大功率DC—DC變換器. 工程科學學報, 2017, 39(8):1224
Ma H C, Zhou X M, Gao D W. High-power DC-DC converter based on SiC power device. Chin J Eng, 2017, 39(8): 1224
|
[5] |
Yuan X L, Zheng Y T, Zhu X H, et al. Recent progress in diamond-based MOSFETs. Int J Miner Metall Mater, 2019, 26(10): 1195 doi: 10.1007/s12613-019-1843-4
|
[6] |
Vickridge I, Ganem J, Hoshino Y, et al. Growth of SiO2 on SiC by dry thermal oxidation: mechanisms. J Phys D Appl Phys, 2007, 40(20): 6254 doi: 10.1088/0022-3727/40/20/S10
|
[7] |
Yano H, Katafuchi F, Kimoto T, et al. Effects of wet oxidation/anneal on interface properties of thermally oxidized SiO2/SiC MOS system and MOSFET’s. IEEE Trans Electron Devices, 1999, 46(3): 504 doi: 10.1109/16.748869
|
[8] |
Kamimura K, Kobayashi D, Okada S, et al. Preparation and characterization of SiO2/6H-SiC metal–insulator–semiconductor structure using TEOS as source material. Appl Surf Sci, 2001, 184(1-4): 346 doi: 10.1016/S0169-4332(01)00515-3
|
[9] |
Lai P T, Xu J P, Wu H P, et al. Interfacial properties and reliability of SiO2 grown on 6H-SiC in dry O2 plus trichloroethylene. Microelectron Reliab, 2004, 44(4): 577 doi: 10.1016/j.microrel.2004.01.009
|
[10] |
Deal B E, Grove A S. General relationship for the thermal oxidation of silicon. J Appl Phys, 1965, 36(12): 3770 doi: 10.1063/1.1713945
|
[11] |
Song Y, Dhar S, Feldman L C, et al. Modified deal grove model for the thermal oxidation of silicon carbide. J Appl Phys, 2004, 95(9): 4953 doi: 10.1063/1.1690097
|
[12] |
Massoud H Z, Plummer J D, Irene E A. Thermal oxidation of silicon in dry oxygen growth-rate enhancement in the thin regime I. Experimental results. J Electrochem Soc, 1985, 132(11): 2685 doi: 10.1149/1.2113648
|
[13] |
Goto D, Hijikata Y, Yagi S, et al. Differences in SiC thermal oxidation process between crystalline surface orientations observed by in-situ spectroscopic ellipsometry. J Appl Phys, 2015, 117(9): 095306 doi: 10.1063/1.4914050
|
[14] |
Kageshima H, Shiraishi K, Uematsu M. Universal theory of Si oxidation rate and importance of interfacial Si emission. Jpn J Appl Phys, 1999, 38(9A): L971
|
[15] |
Hijikata Y, Yaguchi H, Yoshida S. A kinetic model of silicon carbide oxidation based on the interfacial silicon and carbon emission phenomenon. Appl Phys Express, 2009, 2(2): 021203
|
[16] |
Schürmann M, Dreiner S, Berges U, et al. Structure of the interface between ultrathin SiO2 films and 4H-SiC (0001). Phys Rev B, 2006, 74(3): 035309 doi: 10.1103/PhysRevB.74.035309
|
[17] |
Fiorenza P, Raineri V. Reliability of thermally oxidized SiO2/4H-SiC by conductive atomic force microscopy. Appl Phys Lett, 2006, 88(21): 212112 doi: 10.1063/1.2207991
|
[18] |
Ito A, Akiyama T, Nakamura K, et al. First-principles calculations for initial oxidation processes of SiC surfaces: Effect of crystalline surface orientations. Jpn J Appl Phys, 2015, 54(10): 101301 doi: 10.7567/JJAP.54.101301
|
[19] |
Matsushita Y, Oshiyama A. Mechanisms of initial oxidation of 4H-SiC (0111) and $ (000\bar{1}) $ surfaces unraveled by first-principles calculations [J/OL]. ArXiv Preprint (2016-12-01)[2020-08-15]. https://arxiv.org/abs/1612.00189.
|
[20] |
Presser V, Nickel K G. Silica on silicon carbide. Crit Rev Solid State Mater Sci, 2008, 33(1): 1 doi: 10.1080/10408430701718914
|
[21] |
Yamamoto T, Hijikata Y, Yaguchi H, et al. Oxide growth rate enhancement of silicon carbide (0001) Si-faces in thin oxide regime. Jpn J Appl Phys, 2008, 47(10R): 7803
|
[22] |
Yamamoto T, Hijikata Y, Yaguchi H, et al. Growth rate enhancement of (0001)-face silicon–carbide oxidation in thin oxide regime. Jpn J Appl Phys, 2007, 46(8L): L770
|
[23] |
Hosoi T, Nagai D, Sometani M, et al. Ultrahigh-temperature rapid thermal oxidation of 4H-SiC (0001) surfaces and oxidation temperature dependence of SiO2/SiC interface properties. Appl Phys Lett, 2016, 109(18): 182114 doi: 10.1063/1.4967002
|
[24] |
Jia Y F, Lv H L, Song Q W, et al. Influence of oxidation temperature on the interfacial properties of n-type 4H-SiC MOS capacitors. Appl Surf Sci, 2017, 397: 175 doi: 10.1016/j.apsusc.2016.11.142
|
[25] |
Goto D, Hijikata Y. Unified theory of silicon carbide oxidation based on the Si and C emission model. J Phys D Appl Phys, 2016, 49(22): 225103 doi: 10.1088/0022-3727/49/22/225103
|
[26] |
Gupta S K, Akhtar J. Thermal oxidation of silicon carbide (SiC)–experimentally observed facts // Mukherjee M. Silicon Carbide—Materials, Processing and Applications in Electronic Devices. Rijeka: InTech, 2011: 207
|
[27] |
侯新梅, 周國治. SiAlON材料的氧化行為. 北京科技大學學報, 2007, 29(11):1114 doi: 10.3321/j.issn:1001-053x.2007.11.011
Hou X M, Zhou G Z. Oxidation behavior of SiAlON materials. J Univ Sci Technol Beijing, 2007, 29(11): 1114 doi: 10.3321/j.issn:1001-053x.2007.11.011
|
[28] |
侯新梅, 虞自由, 陳志遠, 等. 高溫含水條件下BN粉體的反應動力學. 北京科技大學學報, 2013, 35(10):1346
Hou X M, Yu Z Y, Chen Z Y, et al. Reaction kinetics of BN powder under high temperature water vapor. J Univ Sci Technol Beijing, 2013, 35(10): 1346
|
[29] |
Wang E H, Chen J H, Hu X J, et al. New perspectives on the gas–solid reaction of α-Si3N4 powder in wet air at high temperature. J Am Ceram Soc, 2016, 99(8): 2699 doi: 10.1111/jace.14274
|
[30] |
Wang E H, Cheng J, Ma J W, et al. Effect of temperature on the initial oxidation behavior and kinetics of 5Cr ferritic steel in air. Metall Mater Trans A, 2018, 49(10): 5169 doi: 10.1007/s11661-018-4781-2
|