<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
GU Chao, WANG Zhong-liang, XIAO Wei, WANG Min, LIU Yu, HUANG Yong-sheng, BAO Yan-ping. Research status and progress on cleanliness of high-fatigue-life bearing steels[J]. Chinese Journal of Engineering, 2021, 43(3): 299-310. doi: 10.13374/j.issn2095-9389.2020.10.09.005
Citation: GU Chao, WANG Zhong-liang, XIAO Wei, WANG Min, LIU Yu, HUANG Yong-sheng, BAO Yan-ping. Research status and progress on cleanliness of high-fatigue-life bearing steels[J]. Chinese Journal of Engineering, 2021, 43(3): 299-310. doi: 10.13374/j.issn2095-9389.2020.10.09.005

Research status and progress on cleanliness of high-fatigue-life bearing steels

doi: 10.13374/j.issn2095-9389.2020.10.09.005
More Information
  • Corresponding author: E-mail: baoyp@ustb.edu.cn
  • Received Date: 2020-10-09
  • Publish Date: 2021-03-26
  • Bearing steel is a significant material for producing basic components in many industrial sectors, such as automotive, high-speed trains, and aerospace. In most cases, the bearings belong to the safety-relevant parts of these structures, so that extensive quality control measures are applied to ensure the entire assembly’s reliability and safety. In the last century, the precise instruments’ bearings were almost dependent on imports, which cost a large fortune. In recent years, the production technique and the production quality of domestic bearing steels keep improving, and the cleanliness keeps increasing. The qualities of some superior domestic bearing steels have become close to foreign bearing steels with high quality. However, the stability still needs to be improved, especially in the aspects of calcium aluminate inclusions and the titanium content in steels. To understand the gaps between domestic and foreign bearing steels, the differences in metallurgical properties of high-fatigue-life bearing steels, such as the main impurity elements and the characteristics of main inclusions, were compared in this paper. Fatigue properties of bearing steels and factors that cause fatigue fracture under various metallurgical properties were also compared. The cleanliness status of domestic bearing steels and the gap with foreign high-quality bearing steels were summarized. There are two types of controlling strategies of the cleanliness for bearing steels: 1) controlling the total oxygen content strictly to get an extremely low total oxygen content; 2) controlling the size and type of oxide inclusions with a relatively low total oxygen content. On this basis, in order to further improve the efficiency of domestic steel bearings, the development of the smelting technology and the integration control system for domestic steel bearings were analyzed and sorted out. Besides, the development direction of further improving the quality and fatigue life of domestic bearing steel was discussed.

     

  • loading
  • [1]
    李昭昆, 雷建中, 徐海峰, 等. 國內外軸承鋼的現狀與發展趨勢. 鋼鐵研究學報, 2016, 28(3):1

    Li Z K, Lei J Z, Xu H F, et al. Current status and development trend of bearing steel in China and abroad. J Iron Steel Res, 2016, 28(3): 1
    [2]
    任秀平: 我國特殊鋼現狀及發展方向. 世界金屬導報, 2016-10-18: B14

    Ren X. Current situation and development direction of special steel in China. World Metal Guide, 2016-10-18: B14
    [3]
    Gu C, Bao Y P, Gan P, et al. Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime. Int J Miner Metall Mater, 2018, 25(6): 623 doi: 10.1007/s12613-018-1609-4
    [4]
    Qian G A, Hong Y S, Zhou C G. Investigation of high cycle and very-high-cycle fatigue behaviors for a structural steel with smooth and notched specimens. Eng Fail Anal, 2010, 17(7-8): 1517 doi: 10.1016/j.engfailanal.2010.06.002
    [5]
    Gao G H, Zhang B X, Cheng C, et al. Very high cycle fatigue behaviors of bainite/martensite multiphase steel treated by quenching-partitioning tempering process. Int J Fatigue, 2016, 92: 203 doi: 10.1016/j.ijfatigue.2016.06.025
    [6]
    李守新, 翁宇慶, 惠衛軍, 等. 高強度鋼超高周疲勞性能: 非金屬夾雜物的影響. 北京: 冶金工業出版社, 2010

    Li S X, Weng Y Q, Hui W J, et al. Very High Cycle Fatigue Properties of High Strength Steels-Effects of Nonmetallic Inclusions. Beijing: Metallurgical Industry Press, 2010
    [7]
    Spriestersbach D, Grad P, Kerscher E. Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime. Int J Fatigue, 2014, 64: 114 doi: 10.1016/j.ijfatigue.2014.03.003
    [8]
    Karr U, Schuller R, Fitzka M, et al. Influence of inclusion type on the very high cycle fatigue properties of 18Ni maraging steel. J Mater Sci, 2017, 52(10): 5954 doi: 10.1007/s10853-017-0831-1
    [9]
    Gu C, Wang M, Bao Y P, et al. Quantitative analysis of inclusion engineering on the fatigue property improvement of bearing steel. Metals, 2019, 9(4): 476 doi: 10.3390/met9040476
    [10]
    Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of nonmetallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture and the size and location of non-metallic inclusions. Int J Fatigue, 1989, 11(5): 291
    [11]
    中華人民共和國國家質量監督檢驗檢疫總局, 中國國家標準化管理委員會. GB/T 18254—2016 高碳鉻軸承鋼. 北京: 中國標準出版社, 2016

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. GB/T 18254—2016 High Carbon Chromium Bearing Steel. Beijing: Standard Press of China, 2016
    [12]
    顧超. 高品質軸承鋼疲勞壽命預測模型及夾雜物影響規律研究[學位論文]. 北京: 北京科技大學, 2019

    Gu C. Microstructure Fatigue Life Prediction Model Based on the Effect of Inclusions in Bearing Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
    [13]
    徐鹿鳴, 王春生, 王德華. 煉鋼的脫氧和復合合金的應用. 鐵合金, 2004, 35(5):12 doi: 10.3969/j.issn.1001-1943.2004.05.003

    Xu L M, Wang C S, Wang D H. Deoxidation of steel making and application of complex ferroalloy. Ferro-Alloys, 2004, 35(5): 12 doi: 10.3969/j.issn.1001-1943.2004.05.003
    [14]
    Shirokov N I, Petukhov B G. Deoxidation of rail steel by a reduced quantity of aluminum. Metallurgist, 1958, 2(1): 22 doi: 10.1007/BF00734438
    [15]
    余宗森. 連鑄中間包及盛鋼桶水口結瘤堵塞問題. 鞍鋼技術, 1980(5):8

    Yu Z S. Noduling and blockage at nozzle of continuous casting tundish and ladle. Angang Technol, 1980(5): 8
    [16]
    Ofengenden A M, Nesterovich R P. Reducing the amount of aluminum for the deoxidation of steel. Metallurgist, 1958, 2(6): 286 doi: 10.1007/BF00736270
    [17]
    盧盛意. 用硅代替鋁脫氧來消除連鑄水口堵塞. 煉鋼, 2004, 20(6):32 doi: 10.3969/j.issn.1002-1043.2004.06.011

    Lu S Y. Elimination of nozzle clogging by substitution Si for Al as deoxidant. Steelmaking, 2004, 20(6): 32 doi: 10.3969/j.issn.1002-1043.2004.06.011
    [18]
    Cai X F, Bao Y P, Lin L, et al. Effect of Al content on the evolution of non-metallic inclusions in Si–Mn deoxidized steel. Steel Res Int, 2016, 87(9): 1168 doi: 10.1002/srin.201500305
    [19]
    Lyu S, Ma X D, Huang Z Z, et al. Understanding the formation and evolution of oxide inclusions in Si-deoxidized spring steel. Metall Mater Trans B, 2019, 50(4): 1862 doi: 10.1007/s11663-019-01613-0
    [20]
    李璟宇, 成國光, 李六一, 等. 202不銹鋼中非金屬夾雜物的形成機理. 工程科學學報, 2019, 41(12):1567

    Li J Y, Cheng G G, Li L Y, et al. Formation mechanism of non-metallic inclusions in 202 stainless steel. Chin J Eng, 2019, 41(12): 1567
    [21]
    Li Y, Chen C Y, Qin G Q, et al. Influence of crucible material on inclusions in 95Cr saw-wire steel deoxidized by Si–Mn. Int J Miner Metall Mater, 2020, 27(8): 1083 doi: 10.1007/s12613-019-1957-8
    [22]
    徐金城, A. R. 帕莫. 鋁脫氧鋼液中氧化物夾雜的形態和成分. 甘肅工業大學學報, 1987, 13(1):55

    Xu J C, Palmer A R. Studies on morphology and compositions of oxide inclusions formed in liquid steel after deoxidation with aluminum. J Lanzhou Univ Technol, 1987, 13(1): 55
    [23]
    史宗耀, 王樹林. 鋁脫氧和硅鋁鐵脫氧分析. 煉鋼, 1991(1):22

    Shi Z Y, Wang S L. Analysis of aluminum deoxidation and silicon-aluminum-iron deoxidation. Steelmaking, 1991(1): 22
    [24]
    張文祿. 鋼用鋁脫氧的“一段空白”. 包鋼科技, 1980(1):58

    Zhang W L. "A Blank" in aluminum deoxidization for steel. Sci Technol Baotou Steel, 1980(1): 58
    [25]
    李會玲, 張哲平, 汪鳳華. Al在鋼中脫氧定氮作用淺析. 天津冶金, 2008(05):51 doi: 10.3969/j.issn.1006-110X.2008.05.013

    Li H L, Zhang Z P, Wang F H. Brief talk on aluminum deoxidation and nitrogen determination function in liquid steel. Tianjin Metall, 2008(05): 51 doi: 10.3969/j.issn.1006-110X.2008.05.013
    [26]
    張復祥. 鋁對非合金軟鋼性能的影響. 鋼鐵研究情報, 1974(4):44

    Zhang F X. Effect of aluminum on performance of non-alloy soft steel. Res Iron Steel, 1974(4): 44
    [27]
    Cui H, Bao Y P, Wang M, et al. Clogging behavior of submerged entry nozzles for Ti-bearing IF steel. Int J Miner Metall Mater, 2010, 17(2): 154 doi: 10.1007/s12613-010-0206-y
    [28]
    華承健, 王敏, 張孟昀, 等. 浸入式水口內壁特征對邊界層流場結構和氧化鋁夾雜物運動行為的影響. 工程科學學報, https://doi.org/10.13374/j.issn2095-9389.2020.05.05.001

    Hua C J, Wang M, Zhang M Y, et al., Effect of submerged entry nozzle wall surface morphologies on boundary layer structure and alumina inclusions transport. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2020.05.05.001
    [29]
    王新華, 王立峰. 硬線鋼中非金屬夾雜物控制. 金屬制品, 2005, 31(5):9

    Wang X H, Wang L F. Control of the non-metallic inclusions in hard wire steels. Steel Wire Products, 2005, 31(5): 9
    [30]
    Gladman T. Developments in inclusions control and their effects on steel properties. Ironmaking Steelmaking, 1992, 19(6): 457
    [31]
    朱麗慧, 趙欽新, 顧海澄, 等. 關于鋼用鋁脫氧的再認識. 鋼鐵研究學報, 1999, 11(4):65 doi: 10.3321/j.issn:1001-0963.1999.04.016

    Zhu L H, Zhao Q X, Gu H C, et al. A new understanding of deoxidation by aluminum in steels. J Iron Steel Res, 1999, 11(4): 65 doi: 10.3321/j.issn:1001-0963.1999.04.016
    [32]
    Gu C, Lian J H, Bao Y P, et al. Microstructure-based fatigue modelling with residual stresses: Prediction of the microcrack initiation around inclusions. Mater Sci Eng A, 2019, 751: 133 doi: 10.1016/j.msea.2019.02.058
    [33]
    Gu C, Lian J H, Bao Y P, et al. Microstructure-based fatigue modelling with residual stresses: Prediction of the fatigue life for various inclusion sizes. Int J Fatigue, 2019, 129: 105158 doi: 10.1016/j.ijfatigue.2019.06.018
    [34]
    包薩日娜, 陳斌, 姜敏, 等. 超低氧鋼中同時降低[Al]s、[O]實驗研究. 鋼鐵, 2007, 42(6):30 doi: 10.3321/j.issn:0449-749X.2007.06.007

    Bao S, Chen B, Jiang M, et al. Experimental research of simultaneous reducing [Al]s and [O] of ultra low oxygen steel. Iron Steel, 2007, 42(6): 30 doi: 10.3321/j.issn:0449-749X.2007.06.007
    [35]
    李海波, 林偉, 王新華, 等. 鋁脫氧鋼中尖晶石夾雜物的生成與轉變. 特殊鋼, 2007, 28(4):30 doi: 10.3969/j.issn.1003-8620.2007.04.011

    Li H B, Lin W, Wang X H, et al. Formation and transformation of spinel inclusion in aluminium killed steel. Special Steel, 2007, 28(4): 30 doi: 10.3969/j.issn.1003-8620.2007.04.011
    [36]
    胡文豪, 包燕平, 金耀輝. GCr15板帶軸承鋼中的Als研究與實踐. 煉鋼, 2009, 25(2):22

    Hu W H, Bao Y P, Jin Y H. Study and control practice of Als in GCr15 bearing steel strip. Steelmaking, 2009, 25(2): 22
    [37]
    王新華. 超低氧含量特殊鋼的脫氧、精煉與非金屬夾雜物控制 // 2010年全國煉鋼—連鑄生產技術會議. 遷安, 2010

    Wang X H. Technologies of deoxidation, refining and non-metallic inclusion control for special steels // Proceedings of 2010 National Steelmaking Continuous Casting Technology Conference. Qian’an, 2010
    [38]
    趙東偉, 李海波, 高攀, 等. 非鈣處理鋁脫氧車輪鋼夾雜物形成及變形行為. 鋼鐵, 2016, 51(1):25

    Zhao D W, Li H B, Gao P, et al. Inclusion formation and deformation in Al-killed wheel steel without calcium treatment. Iron Steel, 2016, 51(1): 25
    [39]
    陳斌, 包薩日娜, 姜敏, 等. 鎂提高鋼水純凈度的研究. 鋼鐵研究學報, 2008, 20(6):14

    Chen B, Bao S, Jiang M, et al. Cleanliness of molten steel improved by Mg. J Iron Steel Res, 2008, 20(6): 14
    [40]
    Deng Z Y, Zhu M Y. Evolution mechanism of non-metallic inclusions in Al-killed alloyed steel during secondary refining process. ISIJ Int, 2013, 53(3): 450 doi: 10.2355/isijinternational.53.450
    [41]
    Deng Z Y, Zhu M Y. Deoxidation mechanism of Al-killed steel during industrial refining process. ISIJ Int, 2014, 54(7): 1498
    [42]
    翟學來, 何鎮明, 劉耀輝, 等. 鈣鋁脫氧對奧氏體錳鋼非金屬夾雜物形成的熱力學分析. 鋼鐵, 1986(6):42

    Zhai X L, He Z M, Liu Y H, et al. Thermodynamic analysis on the non-metallic inclusion formation in deoxidation of austenitic Mn-steels with Ca-Al. Iron Steel, 1986(6): 42
    [43]
    喬夢然, 郭曙強, 鄭紅妍, 等. GCr18Mo軸承鋼的鎂處理改質效果研究. 上海金屬, 2019, 41(2):86 doi: 10.3969/j.issn.1001-7208.2019.02.016

    Qiao M R, Guo S Q, Zheng H Y, et al. Study on the modification of inclusions by Mg treatment in GCr18Mo bearing steel. Shanghai Met, 2019, 41(2): 86 doi: 10.3969/j.issn.1001-7208.2019.02.016
    [44]
    Yang C Y, Liu P, Luan L K, et al. Study on transverse-longitudinal fatigue properties and their effective inclusion-size mechanism of hot rolled bearing steel with rare earth addition. Int J Fatigue, 2019, 128: 105193 doi: 10.1016/j.ijfatigue.2019.105193
    [45]
    常立忠, 高崗, 鄭福舟, 等. 稀土?鎂復合處理對GCr15軸承鋼中夾雜物的影響. 工程科學學報, 2019, 41(6):763

    Chang L Z, Gao G, Zheng F Z, et al. Effect of rare earth and magnesium complex treatment on inclusions in GCr15 bearing steel. Chin J Eng, 2019, 41(6): 763
    [46]
    Gu C, Bao Y P, Gan P, et al. An experimental study on the impact of deoxidation methods on the fatigue properties of bearing steels. Steel Res Int, 2018, 89(9): 1800129 doi: 10.1002/srin.201800129
    [47]
    Ladutkin D, Korte E, Bleymehl M, et al. Advantages of Si deoxidation of bearing steels for steel cleanness and for composition and morphology of nonmetallic inclusions in rolled product // Bearing Steel Technologies: 11th Volume, Progress in Steel Technologies and Bearing Steel Quality Assurance. West Conshohocken, 2017: 48
    [48]
    Shimamoto M, Sugimura T, Kimura S, et al. Improvement of the rolling contact fatigue resistance in bearing steels by adjusting the composition of oxide inclusions // Bearing Steel Technologies: 10th Volume, Advances in Steel Technologies for Rolling Bearings. West Conshohocken, 2015: 173
    [49]
    Owaki A, Shimamoto M, Sugimura T, et al. The study of the evaluation of the fracture initiation and propagation on the rolling contact fatigue in bearing steels // Bearing Steel Technologies: 11th Volume, Progress in Steel Technologies and Bearing Steel Quality Assurance. West Conshohocken, 2017: 487
    [50]
    薛正良, 李正邦, 張家雯. 鋼的脫氧與氧化物夾雜控制. 特殊鋼, 2001, 22(6):24 doi: 10.3969/j.issn.1003-8620.2001.06.008

    Xue Z L, Li Z B, Zhang J W. Deoxidization and oxide inclusion control of steel. Special Steel, 2001, 22(6): 24 doi: 10.3969/j.issn.1003-8620.2001.06.008
    [51]
    吳偉, 劉瀏, 李峻. 重軌鋼無鋁脫氧工藝的研究. 鋼鐵, 2007, 42(3):33 doi: 10.3321/j.issn:0449-749X.2007.03.009

    Wu W, Liu L, Li J. Deoxidization process with low aluminum addition for heavy rail steel. Iron Steel, 2007, 42(3): 33 doi: 10.3321/j.issn:0449-749X.2007.03.009
    [52]
    李陽, 姜周華, 袁偉霞, 等. 精煉渣對非鋁脫氧鋼中夾雜物影響的實驗研究. 中國冶金, 2006, 16(6):28 doi: 10.3969/j.issn.1006-9356.2006.06.008

    Li Y, Jiang Z H, Yuan W X, et al. Effect of refining slag on inclusions in non-aluminum deoxidation steel. China Metall, 2006, 16(6): 28 doi: 10.3969/j.issn.1006-9356.2006.06.008
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (3961) PDF downloads(271) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频