Citation: | DING Long, QIAN Li-xin, YANG Tao, ZHANG Hong-liang, YU Zheng-wei, ZHANG Xiao-xia, LONG Hong-ming. Influence of Zn in the iron ore sintering flue gas on the removal of NOx and dioxins by V2O5–WO3/TiO2 catalyst[J]. Chinese Journal of Engineering, 2021, 43(8): 1125-1135. doi: 10.13374/j.issn2095-9389.2020.10.08.001 |
[1] |
Kong M, Liu Q C, Zhou J, et al. Effect of different potassium species on the deactivation of V2O5?WO3/TiO2 SCR catalyst: Comparison of K2SO4, KCl and K2O. Chem Eng J, 2018, 348: 637 doi: 10.1016/j.cej.2018.05.045
|
[2] |
邢奕, 張文伯, 蘇偉, 等. 中國鋼鐵行業超低排放之路. 工程科學學報, 2021, 43(1):1
Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1
|
[3] |
閆伯駿, 邢奕, 路培, 等. 鋼鐵行業燒結煙氣多污染物協同凈化技術研究進展. 工程科學學報, 2018, 40(7):767
Yan B J, Xing Y, Lu P, et al. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry. Chin J Eng, 2018, 40(7): 767
|
[4] |
Yu Y K, He C, Chen J S, et al. Deactivation mechanism of de-NOx catalyst (V2O5?WO3/TiO2) used in coal fired power plant. J Fuel Chem Technol, 2012, 40(11): 1359 doi: 10.1016/S1872-5813(13)60003-1
|
[5] |
吳勝利, 張永忠, 蘇博, 等. 影響燒結工藝過程NOx排放質量濃度的主要因素解析. 工程科學學報, 2017, 39(5):693
Wu S L, Zhang Y Z, Su B, et al. Analysis of main factors affecting NOx emissions in sintering process. Chin J Eng, 2017, 39(5): 693
|
[6] |
王靜, 沈伯雄, 劉亭, 等. 釩鈦基SCR催化劑中毒及再生研究進展. 環境科學與技術, 2010, 33(9):97
Wang J, Shen B X, Liu T, et al. Deactivation and regeneration of SCR catalyst based on V2O5?TiO2. Environ Sci Technol, 2010, 33(9): 97
|
[7] |
Wang C, Li C M, Li Y J, et al. Destructive influence of cement dust on the structure and DeNOx performance of V-based SCR catalyst. Ind Eng Chem Res, 2019, 58(43): 19847 doi: 10.1021/acs.iecr.9b04268
|
[8] |
劉建東, 黃張根, 李哲, 等. Ce對Mn/TiO2/堇青石整體低溫脫硝選擇性催化還原催化劑的改性. 高等學校化學學報, 2014, 35(3):589
Liu J D, Huang Z G, Li Z, et al. Ce modification on Mn/TiO2/cordierite monolithic catalyst for low-temperature NOx reduction. Chem J Chin Univ, 2014, 35(3): 589
|
[9] |
Chen L, Li J H, Ge M F. The poisoning effect of alkali metals doping over nano V2O5?WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3. Chem Eng J, 2011, 170(2-3): 531 doi: 10.1016/j.cej.2010.11.020
|
[10] |
Li X, Li J H, Peng Y, et al. Regeneration of commercial SCR catalysts: probing the existing forms of arsenic oxide. Environ Sci Technol, 2015, 49(16): 9971 doi: 10.1021/acs.est.5b02257
|
[11] |
Dahlin S, Nilsson M, B?ckstr?m D, et al. Multivariate analysis of the effect of biodiesel-derived contaminants on V2O5?WO3/TiO2 SCR catalysts. Appl Catal B Environ, 2016, 183: 377 doi: 10.1016/j.apcatb.2015.10.045
|
[12] |
Guo R T, Lu C Z, Pan W G, et al. A comparative study of the poisoning effect of Zn and Pb on Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Catal Commun, 2015, 59: 136 doi: 10.1016/j.catcom.2014.10.006
|
[13] |
Peng Y, Wang D, Li B et al. Impacts of Pb and SO2 poisoning on CeO2?WO3/TiO2? SiO2 SCR catalyst. Environ Sci Technol, 2017, 51(20): 11943 doi: 10.1021/acs.est.7b03309
|
[14] |
Yan L J, Wang F L, Wang P L, et al. Unraveling the unexpected offset effects of Cd and SO2 deactivation over CeO2?WO3/TiO2 catalysts for NOx reduction. Environ Sci Technol, 2020, 54(12): 7697 doi: 10.1021/acs.est.0c01749
|
[15] |
Kong M, Liu Q C, Zhu B H, et al. Synergy of KCl and Hgel on selective catalytic reduction of NO with NH3 over V2O5? WO3/TiO2 catalysts. Chem Eng J, 2015, 264: 815 doi: 10.1016/j.cej.2014.12.038
|
[16] |
Qian L X, Chun T J, Long H M, et al. Emission reduction research and development of PCDD/Fs in the iron ore sintering. Process Saf Environ Prot, 2018, 117: 82 doi: 10.1016/j.psep.2018.04.014
|
[17] |
Chun T J, Zhu D Q. New process of pellets-metallized sintering process (PMSP) to treat zinc-bearing dust from iron and steel company. Metall Mater Trans B, 2015, 46(1): 1 doi: 10.1007/s11663-014-0243-4
|
[18] |
紀莎莎, 李曉東, 俞明鋒, 等. V2O5?WO3/TiO2 催化劑降解氣相二惡英的研究. 浙江大學學報(工學版), 2014, 48(10):1746
Ji S S, Li X D, Yu M F, et al. Oxidation of PCDD/Fs over V2O5?TiO2-based catalyst. J Zhejiang Univ Eng Sci, 2014, 48(10): 1746
|
[19] |
Yang C C, Chang S H, Hong B Z, et al. Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5?WO3/TiO2-based catalysts. Chemosphere, 2008, 73(6): 890 doi: 10.1016/j.chemosphere.2008.07.027
|
[20] |
Weng X L, Xue Y H, Chen J K, et al. Elimination of chloroaromatic congeners on a commercial V2O5?WO3/TiO2 catalyst: The effect of heavy metal Pb. J Hazard Mater, 2020, 387: 121705 doi: 10.1016/j.jhazmat.2019.121705
|
[21] |
Sprenger D, Bach H, Meisel W, et al. XPS study of leached glass surfaces. J Non-Cryst Solids, 1990, 126(1? 2): 111
|
[22] |
Topsoe N Y, Topsoe H, Dumesic J A. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia: I. combined temperature-programmed in-situ FTIR and on-line mass-spectroscopy studies. J Catal, 1995, 151(1): 226 doi: 10.1006/jcat.1995.1024
|
[23] |
Alemany L J, Lietti L, Ferlazzo N, et al. Reactivity and physicochemical characterization of V2O5?WO3/TiO2 de-NOx catalysts. J Catal, 1995, 155(1): 117 doi: 10.1006/jcat.1995.1193
|
[24] |
Ramis G, Yi L, Busca G. Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3. An FT-IR study. Catal Today, 1996, 28(4): 373 doi: 10.1016/S0920-5861(96)00050-8
|
[25] |
Topsoe N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy. Science, 1994, 265(5176): 1217 doi: 10.1126/science.265.5176.1217
|
[26] |
Wang J, Wang X, Liu X L, et al. Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts: The effects of chlorine substituents. Catal Today, 2015, 241: 92 doi: 10.1016/j.cattod.2014.04.002
|
[27] |
Miao J F, Yi X F, Su Q F, et al. Poisoning effects of phosphorus, potassium and lead on V2O5?WO3/TiO2 catalysts for selective catalytic reduction with NH3. Catalysts, 2020, 10(3): 345 doi: 10.3390/catal10030345
|
[28] |
Gao F Y, Tang X L, Yi H H, et al. The poisoning and regeneration effect of alkali metals deposed over commercial V2O5?WO3/TiO2 catalysts on SCR of NO by NH3. Chin Sci Bull, 2014, 59(31): 3966 doi: 10.1007/s11434-014-0496-y
|
[29] |
Xu L W, Wang C Z, Chang H Z, et al. New insight into SO2 poisoning and regeneration of CeO2–WO3/TiO2 and V2O5–WO3/TiO2 catalysts for low-temperature NH3–SCR. Environ Sci Technol, 2018, 52(12): 7064 doi: 10.1021/acs.est.8b01990
|
[30] |
Madia G, Elsener M, Koebel M, et al. Thermal stability of vanadia-tungsta-titania catalysts in the SCR process. Appl Catal B Environ, 2002, 39(2): 181 doi: 10.1016/S0926-3373(02)00099-1
|
[31] |
Bond G C, Tahir S F. Vanadium oxide monolayer catalysts Preparation, characterization and catalytic activity. App Catal, 1991, 71(1): 1 doi: 10.1016/0166-9834(91)85002-D
|