<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
SONG Bo, LI Bang, XIAO Nan, LAO Jun. Fluid–structure interaction vibration characteristics of the AFT workshop structure based on micro-vibration monitoring[J]. Chinese Journal of Engineering, 2022, 44(7): 1255-1264. doi: 10.13374/j.issn2095-9389.2020.10.04.002
Citation: SONG Bo, LI Bang, XIAO Nan, LAO Jun. Fluid–structure interaction vibration characteristics of the AFT workshop structure based on micro-vibration monitoring[J]. Chinese Journal of Engineering, 2022, 44(7): 1255-1264. doi: 10.13374/j.issn2095-9389.2020.10.04.002

Fluid–structure interaction vibration characteristics of the AFT workshop structure based on micro-vibration monitoring

doi: 10.13374/j.issn2095-9389.2020.10.04.002
More Information
  • Corresponding author: E-mail: y19801202162@163.com
  • Received Date: 2020-10-04
    Available Online: 2021-08-12
  • Publish Date: 2022-07-01
  • An AFT oxidation fan room is a kind of composite structure of reinforced concrete structure supporting the steel tank in the desulfurization process. It is a common structural form of a power plant. The obvious vibration generated by the structure is not conducive to the normal production and operation of the power plant and may even cause accidents. Therefore, on-site monitoring and a simulation calculation are carried out for the AFT structure to study the causes of vibration of the AFT structure and clarify its vibration mechanism. First, a field investigation of the AFT structure is carried out combining video monitoring and local structure vibration monitoring. Based on the simulation method of the fluid-solid interaction, a simulation method to simplify the action of the mixer and the oxidation wind in the steel tank is then proposed, and the vibration characteristics of the AFT structure are further studied through the proposed numerical simulation method. Finally, numerical simulation results are compared with the monitoring results, and causes of vibration differences in various parts of the structure are studied. Results show that video monitoring can quickly identify the structure movement track. Local monitoring results show that the mixer is the main factor of the structural vibration, and the aeration of the oxidation wind intensifies the structural vibration response, causing different degrees of damage to the infill wall between the columns of the structure. The dynamic response law of different positions of each column and the upper steel tank of the structure is found to be more different. A comparison of numerical simulation results with monitoring results verified the calculation method of simplifying the mixer and the oxidation wind effect, providing a reference for the analysis of the vibration response, damage mechanism, and reinforcement design of such structures.

     

  • loading
  • [1]
    李元, 楊志忠. 濕法煙氣脫硫關鍵影響因素及新型單塔雙循環技術. 環境工程, 2016, 34(1):69

    Li Y, Yang Z Z. Influence of key factors on lime-gypsum wet flue gas desulfurization and two circulations per tower technology. Environ Eng, 2016, 34(1): 69
    [2]
    韓璞, 毛新靜, 周黎輝, 等. 濕法煙氣脫硫中強制氧化系統的機理建模. 華北電力大學學報, 2006, 33(5):60

    Han P, Mao X J, Zhou L H, et al. Mechanism modeling for forced oxidation system of flue gas desulfurization device. J North China Electr Power Univ, 2006, 33(5): 60
    [3]
    陳佳. 側進式攪拌反應器內均相及多相流體動力學的數值研究[學位論文]. 上海: 華東理工大學, 2013

    Chen J. Single-and Multi-Phase Flow Dynamics Simulations of the Side-Entering Stirred Reactors [Dissertation]. Shanghai: East China University of Science and Technology, 2013
    [4]
    徐國徽, 顧學康. 液艙晃蕩載荷數值模擬中的流固耦合影響研究. 船舶力學, 2012, 16(5):514 doi: 10.3969/j.issn.1007-7294.2012.05.008

    Xu G H, Gu X K. Investigation to the numerical simulation approach for sloshing in tanks considering fluid–structure interaction. J Ship Mech, 2012, 16(5): 514 doi: 10.3969/j.issn.1007-7294.2012.05.008
    [5]
    Xu Y X, Shao C F, Zheng D J, et al. Diagnosis of abnormal structural vibration for Xiaoshunjiang pumping station // 15th Biennial ASCE Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Florida, 2016: 943
    [6]
    丁陽, 馬瑞, 李寧. 三維波流耦合水槽模擬模型. 工程力學, 2015, 32(10):68 doi: 10.6052/j.issn.1000-4750.2014.03.0190

    Ding Y, Ma R, Li N. A simulation model for three-dimensional coupled wave-current flumes. Eng Mech, 2015, 32(10): 68 doi: 10.6052/j.issn.1000-4750.2014.03.0190
    [7]
    石巖, 舒歌群, 畢鳳榮. 基于計算流體動力學的內燃機排氣消聲器聲學特性仿真. 振動工程學報, 2011, 24(2):205 doi: 10.3969/j.issn.1004-4523.2011.02.016

    Shi Y, Shu G Q, Bi F R. Acoustic characteristics simulation of engine exhaust muffler based on CFD. J Vib Eng, 2011, 24(2): 205 doi: 10.3969/j.issn.1004-4523.2011.02.016
    [8]
    Bigoni C, Hesthaven J S. Simulation-based anomaly detection and damage localization: An application to structural health monitoring. Comput Methods Appl Mech Eng, 2020, 363: 112896 doi: 10.1016/j.cma.2020.112896
    [9]
    Limongelli M P, Giordano P F. Vibration-based damage indicators: A comparison based on information entropy. J Civ Struct Heal Monit, 2020, 10(2): 251 doi: 10.1007/s13349-020-00381-9
    [10]
    王旭. 濕法煙氣脫硫塔漿液池內反應過程及流場優化[學位論文]. 廣州: 華南理工大學, 2016

    Wang X. The Reaction Process and Optimization of Flow Field in Slurry Pond of WFGD Towers [Dissertation]. Guangzhou: South China University of Technology, 2016
    [11]
    Zhang C W. Analytical study of transient coupling between vessel motion and liquid sloshing in multiple tanks. J Eng Mech, 2016, 142(7): 04016034 doi: 10.1061/(ASCE)EM.1943-7889.0001085
    [12]
    盧姍姍, 張志富, 劉金博, 等. 高層建筑結構風致振動的被動吸吹氣流動控制研究. 振動與沖擊, 2021, 40(11):7

    Lu S S, Zhang Z F, Liu J B, et al. Passive suction and blowing flow control of wind-induced vibration of tall buildings. J Vib Shock, 2021, 40(11): 7
    [13]
    Li Z L, Zhang L Z, Zhu X D, et al. Design and validation of wireless dynamic testing system for bridge based on the 941B type vibration sensor // Ninth International Conference of Chinese Transportation Professionals (ICCTP). Harbin, 2009: 1
    [14]
    師燕超, 李紹琦, 李忠獻, 等. 基于實測頻率的鋼筋混凝土柱爆炸損傷快速評估方法. 建筑結構學報, 2021, 42(11):155

    Shi Y C, Li S Q, Li Z X, et al. Rapid evaluation method for blast damage of reinforced concrete columns based on measured frequency. J Build Struct, 2021, 42(11): 155
    [15]
    姜忻良, 張崇祥, 姜南, 等. 設備-結構動力相互作用振動臺試驗方法研究. 振動與沖擊, 2019, 38(3):108

    Jiang X L, Zhang C X, Jiang N, et al. Shaking table test method for equipment-structure dynamic interaction. J Vib Shock, 2019, 38(3): 108
    [16]
    Guo J, Zhu C A. Dynamic displacement measurement of large-scale structures based on the Lucas–Kanade template tracking algorithm. Mech Syst Signal Process, 2016, 66-67: 425 doi: 10.1016/j.ymssp.2015.06.004
    [17]
    趙超, 趙家鈺, 孫清, 等. 環境激勵下輸電塔動力特性參數識別. 振動與沖擊, 2021, 40(4):30

    Zhao C, Zhao J Y, Sun Q, et al. A study on identification of dynamic characteristic parameters of a transmission tower under ambient excitations. J Vib Shock, 2021, 40(4): 30
    [18]
    朱本瑞, 孫超, 黃焱. 海上單樁風機結構冰激振動響應分析. 土木工程學報, 2021, 54(1):88

    Zhu B R, Sun C, Huang Y. Ice-induced vibration response analysis of monopile offshore wind turbine. China Civ Eng J, 2021, 54(1): 88
    [19]
    董霄峰, 練繼建, 王海軍. 海上風機結構振動監測試驗與特性分析. 天津大學學報(自然科學與工程技術版), 2019, 52(2):191

    Dong X F, Lian J J, Wang H J. Monitoring experiment and characteristic analysis of structural vibration of offshore wind turbine. J Tianjin Univ (Sci Technol), 2019, 52(2): 191
    [20]
    王延林, 岳前進, 畢祥軍, 等. 基于現場監測的海洋平臺冰振控制效果評價. 振動與沖擊, 2012, 31(7):39 doi: 10.3969/j.issn.1000-3835.2012.07.009

    Wang Y L, Yue Q J, Bi X J, et al. Ice-induced vibration control effectiveness evaluation for an offshore platform based on a field monitoring. J Vib Shock, 2012, 31(7): 39 doi: 10.3969/j.issn.1000-3835.2012.07.009
    [21]
    Soman R, Kyriakides M, Onoufriou T, et al. Numerical evaluation of multi-metric data fusion based structural health monitoring of long span bridge structures. Struct Infrastructure Eng, 2018, 14(6): 673 doi: 10.1080/15732479.2017.1350984
    [22]
    朱斌, 蔣楠, 周傳波, 等. 基坑開挖爆破作用鄰近壓力燃氣管道動力響應特性研究. 振動與沖擊, 2020, 39(11):201

    Zhu B, Jiang N, Zhou C B, et al. Effect of excavation blast vibration on adjacent buried gas pipeline in a foundation pit. J Vib Shock, 2020, 39(11): 201
    [23]
    Qarib H, Mohamed D. Analysis, prediction, and mitigation of vortex induced vibrations in substation structures // Electrical Transmission and Substation Structures 2018. Atlanta, 2018: 191
    [24]
    吳嵌嵌, 張雷克, 馬震岳, 等. 水電站機組–廠房結構突增負荷過渡過程振動特性研究. 振動與沖擊, 2019, 38(18):53

    Wu Q Q, Zhang L K, Ma Z Y, et al. Vibration characteristics of the unit–plant structure of a hydropower station under transient load-up process. J Vib Shock, 2019, 38(18): 53
    [25]
    陳功國, 張林進, 柏楊, 等. 側入式攪拌槽中槳葉參數對流場及功率影響的數值模擬. 北京化工大學學報(自然科學版), 2012, 39(3):29

    Chen G G, Zhang L J, Bai Y, et al. Numerical simulation of the influence of the agitator parameter on the field characteristics and the power in a side-entering stirred reactor. J Beijing Univ Chem Technol (Nat Sci Ed), 2012, 39(3): 29
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(19)  / Tables(2)

    Article views (428) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频