Citation: | WANG Zi-xin, ZHANG Yong. Microstructure and properties of FeCrVTa0.4W0.4 high-entropy alloy nitride films[J]. Chinese Journal of Engineering, 2021, 43(5): 684-692. doi: 10.13374/j.issn2095-9389.2020.09.28.004 |
[1] |
Feng X B, Zhang J Y, Wang Y Q, et al. Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films. Int J Plast, 2017, 95: 264 doi: 10.1016/j.ijplas.2017.04.013
|
[2] |
Sohn S, Liu Y H, Liu J B, et al. Noble metal high entropy alloys. Scripta Mater, 2017, 126: 29 doi: 10.1016/j.scriptamat.2016.08.017
|
[3] |
Liu S, Gao M C, Liaw P K, et al. Microstructures and mechanical properties of AlxCrFeNiTi0.25 alloys. J Alloys Compd, 2015, 619: 610 doi: 10.1016/j.jallcom.2014.09.073
|
[4] |
Takeuchi A, Amiya K, Wada T, et al. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM, 2014, 66(10): 1984 doi: 10.1007/s11837-014-1085-x
|
[5] |
Li D Y, Li C X, Feng T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater, 2017, 123: 285 doi: 10.1016/j.actamat.2016.10.038
|
[6] |
Li D Y, Zhang Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics, 2016, 70: 24 doi: 10.1016/j.intermet.2015.11.002
|
[7] |
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345(6201): 1153 doi: 10.1126/science.1254581
|
[8] |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19(5): 698 doi: 10.1016/j.intermet.2011.01.004
|
[9] |
吳炳乾, 饒湖常, 張沖, 等. Si含量對FeCoCr0.5NiBSix高熵合金涂層組織結構和耐磨性的影響. 表面技術, 2015, 44(12):85
Wu B Q, Rao H C, Zhang C, et al. Effect of silicon content on the microstructure and wear resistance of FeCoCr0.5 NiBSix high-entropy alloy coatings. Surf Technol, 2015, 44(12): 85
|
[10] |
Butler T M, Weaver M L. Influence of annealing on the microstructures and oxidation behaviors of Al8(CoCrFeNi)92, Al15(CoCrFeNi)85, and Al30(CoCrFeNi)70 high-entropy alloys. Metals, 2016, 6(9): 222 doi: 10.3390/met6090222
|
[11] |
謝紅波, 劉貴仲, 郭景杰, 等. 添加Al對AlxFeCrCoCuTi高熵合金組織與高溫氧化性能的影響. 稀有金屬, 2016, 40(4):315
Xie H B, Liu G Z, Guo J J, et al. Microstructure and high temperature oxidation properties of AlxFeCrCoCuTi high-entropy alloys with different Al contents. Rare Met, 2016, 40(4): 315
|
[12] |
謝紅波, 劉貴仲, 郭景杰. Mn、V、Mo、Ti、Zr元素對AlFeCrCoCu-X高熵合金組織與高溫氧化性能的影響. 中國有色金屬學報, 2015, 25(1):103 doi: 10.1016/S1003-6326(15)63584-1
Xie H B, Liu G Z, Guo J J. Effects of Mn, V, Mo, Ti, Zr elements on microstructure and high temperature oxidation performance of AlFeCrCoCu-X high-entropy alloys. Chin J Nonferrous Met, 2015, 25(1): 103 doi: 10.1016/S1003-6326(15)63584-1
|
[13] |
Li P P, Wang A D, Liu C T. A ductile high entropy alloy with attractive magnetic properties. J Alloys Compd, 2017, 694: 55 doi: 10.1016/j.jallcom.2016.09.186
|
[14] |
Zuo T T, Gao M C, Ouyang L Z, et al. Tailoring magnetic behavior of CoFeMnNiX (X=Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater, 2017, 130: 10 doi: 10.1016/j.actamat.2017.03.013
|
[15] |
Zuo T T, Yang X, Liaw P K, et al. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy. Intermetallics, 2015, 67: 171 doi: 10.1016/j.intermet.2015.08.014
|
[16] |
Wang J, Zheng Z, Xu J, et al. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys. J Magn Magn Mater, 2014, 355: 58 doi: 10.1016/j.jmmm.2013.11.049
|
[17] |
Komarov F F, Pogrebnyak A D, Konstantinov S V. Radiation resistance of high-entropy nanostructured (Ti, Hf, Zr, V, Nb)N coatings. Tech Phys, 2015, 60(10): 1519 doi: 10.1134/S1063784215100187
|
[18] |
Nagase T, Rack P D, Noh J H, et al. In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics, 2015, 59: 32 doi: 10.1016/j.intermet.2014.12.007
|
[19] |
Egami T, Ojha M, Khorgolkhuu O, et al. Local electronic effects and irradiation resistance in high-entropy alloys. JOM, 2015, 67(10): 2345 doi: 10.1007/s11837-015-1579-1
|
[20] |
何春靜, 劉雄軍, 張盼, 等. 粉末冶金在高熵材料中的應用. 工程科學學報, 2019, 41(12):1501
He C J, Liu X J, Zhang P, et al. Applications of powder metallurgy technology in high-entropy materials. Chin J Eng, 2019, 41(12): 1501
|
[21] |
閆薛卉, 張勇. 高熵薄膜和成分梯度材料. 表面技術, 2019, 48(6):98
Yan X H, Zhang Y. High-entropy films and compositional gradient materials. Surf Technol, 2019, 48(6): 98
|
[22] |
Feng X G, Zhang K F, Zheng Y G, et al. Chemical state, structure and mechanical properties of multi-element (CrTaNbMoV)Nx films by reactive magnetron sputtering. Mater Chem Phys, 2020, 239: 121991 doi: 10.1016/j.matchemphys.2019.121991
|
[23] |
Hsieh T H, Hsu C H, Wu C Y, et al. Effects of deposition parameters on the structure and mechanical properties of high-entropy alloy nitride films. Curr Appl Phys, 2018, 18(5): 512 doi: 10.1016/j.cap.2018.02.015
|
[24] |
von Fieandt K, Paschalidou E M, Srinath A, et al. Multi-component (Al, Cr, Nb, Y, Zr)N thin films by reactive magnetron sputter deposition for increased hardness and corrosion resistance. Thin Solid Films, 2020, 693: 137685 doi: 10.1016/j.tsf.2019.137685
|
[25] |
Xing Q W, Xia S Q, Yan X H, et al. Mechanical properties and thermal stability of (NbTiAlSiZr)Nx high-entropy ceramic films at high temperatures. J Mater Res, 2018, 33(19): 3347 doi: 10.1557/jmr.2018.337
|
[26] |
Chen T K, Shun T T, Yeh J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf Coat Technol, 2004, 188-189: 193 doi: 10.1016/j.surfcoat.2004.08.023
|
[27] |
Huang P K, Yeh J W. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surf Coat Technol, 2009, 203(13): 1891 doi: 10.1016/j.surfcoat.2009.01.016
|
[28] |
Braic V, Vladescu A, Balaceanu M, et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surf Coat Technol, 2012, 211: 117 doi: 10.1016/j.surfcoat.2011.09.033
|
[29] |
Guo H X, He C Y, Qiu X L, et al. A novel multilayer high temperature colored solar absorber coating based on high-entropy alloy MoNbHfZrTi: Optimized preparation and chromaticity investigation. Sol Energy Mater Sol Cells, 2020, 209: 110444 doi: 10.1016/j.solmat.2020.110444
|
[30] |
Zhang W R, Liaw P K, Zhang Y. A novel low-activation VCrFeTaxWx (x=0.1, 0.2, 0.3, 0.4, and 1) high-entropy alloys with excellent heat-softening resistance. Entropy, 2018, 20(12): 951 doi: 10.3390/e20120951
|
[31] |
Xing Q W, Ma J, Wang C, et al. High-throughput screening solar-thermal conversion films in a pseudobinary (Cr, Fe, V)?(Ta, W) system. ACS Comb Sci, 2018, 20(11): 602 doi: 10.1021/acscombsci.8b00055
|