<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 5
May  2021
Turn off MathJax
Article Contents
PAN Feng-wen, GONG Dong-liang, GAO ying, KOU Ya-lin. Lithium-ion battery state of charge estimation based on a robust H∞ filter[J]. Chinese Journal of Engineering, 2021, 43(5): 693-701. doi: 10.13374/j.issn2095-9389.2020.09.21.002
Citation: PAN Feng-wen, GONG Dong-liang, GAO ying, KOU Ya-lin. Lithium-ion battery state of charge estimation based on a robust H filter[J]. Chinese Journal of Engineering, 2021, 43(5): 693-701. doi: 10.13374/j.issn2095-9389.2020.09.21.002

Lithium-ion battery state of charge estimation based on a robust H filter

doi: 10.13374/j.issn2095-9389.2020.09.21.002
More Information
  • Corresponding author: E-mail: gaoying@jlu.edu.cn
  • Received Date: 2020-09-21
  • Publish Date: 2021-05-25
  • The state of charge (SOC) estimation is one of the core functions of the battery management system; it can play a significant role in the life cycle of electric vehicles. The SOC estimation method has attracted considerable research attention in recent years, particularly about improving estimation accuracy. However, most studies are limited by only focusing on known or fixed battery model parameters and not considering their temperature dependence. This indicates a need to explore how the lithium-ion battery temperature affects the model parameters, which leads to inaccurate SOC estimation. The principal objective of this study is to investigate the robust H filter-based method for the problem that temperature affects battery model parameters and thus leads to inaccurate SOC estimation. First, the second-order Thevenin equivalent circuit model with two parallel resistor–capacitor pairs is taken as the basic model of the lithium-ion battery. The influence of temperature on battery model parameters is modeled as an additive variable of the nominal resistance value and the total battery capacity, and the temperature change is considered an external disturbance of the system. Afterward, the sliding linear method is used to linearize this battery model; on this basis, a robust H filter for SOC estimation is designed using linear matrix inequality technology. Finally, the effectiveness of the proposed approach is verified using four different types of dynamic current load profiles (the BJDST-Beijing Dynamic Stress Test, FUDS-Federal Urban Driving Schedule, US06-US06 Highway Driving Schedule and BJDST-FUDS-US06 joint dynamic test) compared with the Kalman filter-based SOC estimation method. The simulation analysis results indicate that the proposed SOC estimation approach can realize a higher SOC estimation accuracy even if the model parameters vary with temperature, and it has good robustness to external disturbances.

     

  • loading
  • [1]
    王曉蘭, 靳皓晴, 劉祥遠. 基于融合模型的鋰離子電池荷電狀態在線估計. 工程科學學報, 2020, 42(9):1200

    Wang X L, Jin H Q, Liu X Y. Online estimation of the state of charge of a lithium-ion battery based on the fusion model. Chin J Eng, 2020, 42(9): 1200
    [2]
    蘇偉, 鐘國彬, 沈佳妮, 等. 鋰離子電池故障診斷技術進展. 儲能科學與技術, 2019, 8(2):225 doi: 10.12028/j.issn.2095-4239.2018.0195

    Su W, Zhong G B, Shen J N, et al. The progress in fault diagnosis techniques for lithium-ion batteries. Energy Storage Sci Technol, 2019, 8(2): 225 doi: 10.12028/j.issn.2095-4239.2018.0195
    [3]
    劉新天, 孫張馳, 何耀, 等. 基于環境變量建模的鋰電池SOC估計方法. 東南大學學報(自然科學版), 2017, 47(2):306 doi: 10.3969/j.issn.1001-0505.2017.02.018

    Liu X T, Sun Z C, He Y, et al. SOC estimation method based on lithium-ion cell model considering environmental factors. J Southeast Univ Nat Sci Ed, 2017, 47(2): 306 doi: 10.3969/j.issn.1001-0505.2017.02.018
    [4]
    馮代偉, 陸超, 陳勇, 等. 具有電流偏差和噪聲擾動的H觀測器在線估計電池SoC狀態. 電子科技大學學報, 2017, 46(4):547 doi: 10.3969/j.issn.1001-0548.2017.04.012

    Feng D W, Lu C, Chen Y, et. al. Battery state-of-charge online estimation based on H observer with current debasing and noise distributions. J Univ Electron Sci Technol China, 2017, 46(4): 547 doi: 10.3969/j.issn.1001-0548.2017.04.012
    [5]
    Lin X F, Kim Y, Mohan S, et al. Modeling and estimation for advanced battery management. Ann Rev Control Rob Autonom Syst, 2019, 2: 393 doi: 10.1146/annurev-control-053018-023643
    [6]
    Miao Z X, Xu L, Disfani V R, et al. An SOC-based battery management system for microgrids. IEEE Trans Smart Grid, 2014, 5(2): 966 doi: 10.1109/TSG.2013.2279638
    [7]
    談發明, 趙俊杰, 王琪. 動力電池SOC估計的一種新型魯棒UKF算法. 汽車工程, 2019, 41(8):944

    Tan F M, Zhao J J, Wang Q. A novel robust UKF algorithm for SOC estimation of traction battery. Autom Eng, 2019, 41(8): 944
    [8]
    Cheng K W E, Divakar B P, Wu H J, et al. Battery-management system (BMS) and SOC development for electrical vehicles. IEEE Trans Veh Technol, 2011, 60(1): 76 doi: 10.1109/TVT.2010.2089647
    [9]
    Dey S, Ayalew B. Nonlinear observer designs for state-of-charge estimation of lithium-ion batteries // 2014 American Control Conference. Portland, 2014: 248
    [10]
    Bhangu B S, Bentley P, Stone D A, et al. Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles. IEEE Trans Veh Technol, 2005, 54(3): 783 doi: 10.1109/TVT.2004.842461
    [11]
    He H W, Xiong R, Fan J X. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies, 2011, 4(4): 582 doi: 10.3390/en4040582
    [12]
    丁鎮濤, 鄧濤, 李志飛, 等. 基于安時積分和無跡卡爾曼濾波的鋰離子電池SOC估算方法研究. 中國機械工程, 2020, 31(15):1823 doi: 10.3969/j.issn.1004-132X.2020.15.009

    Ding Z T, Deng T, Li Z F, et al. SOC estimation of lithium-ion battery based on ampere hour integral and unscented Kalman filter. China Mech Eng, 2020, 31(15): 1823 doi: 10.3969/j.issn.1004-132X.2020.15.009
    [13]
    靳博文, 喬慧敏, 潘天紅, 等. 基于內阻功率消耗的鋰電池SOC估計. 汽車工程, 2020, 42(8):1008

    Jin B W, Qiao H M, Pan T H, et al. Lithium battery SOC estimation based on internal resistance power consumption. Autom Eng, 2020, 42(8): 1008
    [14]
    Codeca F, Savaresi S M, Rizzoni G. On battery state of charge estimation: A new mixed algorithm // 2008 IEEE International Conference on Control Applications. San Antonio, 2008: 102
    [15]
    Hu Y R, Yurkovich S. Battery state of charge estimation in automotive applications using LPV techniques // Proceedings of the 2010 American Control Conference. Baltimore, 2010: 5043
    [16]
    Hu Y, Yurkovich S. Battery cell state-of-charge estimation using linear parameter varying system techniques. J Power Sources, 2012, 198: 338 doi: 10.1016/j.jpowsour.2011.09.058
    [17]
    Zhang Y, Zhang C H, Zhang X F. State-of-charge estimation of the lithium-ion battery system with time-varying parameter for hybrid electric vehicles. IET Control Theory Appl, 2013, 8(3): 160
    [18]
    Liu C Z, Zhu Q, Li L, et al. A state of charge estimation method based on H∞ observer for switched systems of lithium-ion nickel-manganese-cobalt batteries. IEEE Trans Ind Electron, 2017, 64(10): 8128 doi: 10.1109/TIE.2017.2701766
    [19]
    Dey S, Ayalew B, Pisu P. Nonlinear robust observers for state-of-charge estimation of lithium-ion cells based on a reduced electrochemical model. IEEE Trans Control Syst Technol, 2015, 23(5): 1935 doi: 10.1109/TCST.2014.2382635
    [20]
    Wang T H, Martinez-Molina J J, Sename O. H observer-based battery fault estimation for HEV application. IFAC Proc Vol, 2012, 45(30): 206 doi: 10.3182/20121023-3-FR-4025.00021
    [21]
    Zhu Q, Li L, Hu X S, et al. H-based nonlinear observer design for state of charge estimation of lithium-ion battery with polynomial parameters. IEEE Trans Veh Technol, 2017, 66(12): 10853 doi: 10.1109/TVT.2017.2723522
    [22]
    Dreef H J, Beelen H P G J, Donkers M C F. LMI-based robust observer design for battery state-of-charge estimation // 2018 IEEE Conference on Decision and Control (CDC). Miami Beach, 2018: 5716
    [23]
    Wang B J, Liu Z Y, Li S E, et al. State-of-charge estimation for lithium-ion batteries based on a nonlinear fractional model. IEEE Trans Control Syst Technol, 2017, 25(1): 3 doi: 10.1109/TCST.2016.2557221
    [24]
    魯偉, 續丹, 楊晴霞, 等. 鋰電池分數階建模與荷電狀態研究. 西安交通大學學報, 2017, 51(7):124

    Lu W, Xu D, Yang Q X, et al. Fractional model and state-of-charge of lithium battery. J Xi'an Jiaotong Univ, 2017, 51(7): 124
    [25]
    Lofberg J. YALMIP: A toolbox for modeling and optimization in MATLAB // 2004 IEEE International Conference on Robotics and Automation. New Orleans, 2004: 284
    [26]
    L?fberg J. Modeling and solving uncertain optimization problems in YALMIP // Proceedings of the 17th IFAC World Congress. Seoul, 2008: 1337
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views (2308) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频