Citation: | ZHENG Zi-xuan, HONG Chen, LI Zai-xing, XING Yi, LI Yi-fei, YANG Jian, QIN Yan, ZHAO Xiu-mei. Preparation and properties of bio-oil from the antibiotic residue by hydrothermal liquefaction[J]. Chinese Journal of Engineering, 2022, 44(1): 152-162. doi: 10.13374/j.issn2095-9389.2020.09.17.003 |
[1] |
朱培, 張建斌, 陳代杰. 抗生素菌渣處理的研究現狀和建議. 中國抗生素雜志, 2013, 38(9):647
Zhu P, Zhang J B, Chen D J. Current research and suggestions for treatment of antibiotic manufacturing biowaste. Chin J Antibiot, 2013, 38(9): 647
|
[2] |
Wang Z Q, Hong C, Xing Y, et al. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal: With and without catalysts. Waste Manag, 2018, 74: 288 doi: 10.1016/j.wasman.2018.01.002
|
[3] |
尤占平, 郝長生, 焦永剛, 等. 兩種抗生素菌渣熱解及燃燒特性對比研究. 工業安全與環保, 2016, 42(5):41
You Z P, Hao C S, Jiao Y G, et al. Pyrolysis and combustion characteristics comparison studies of two kinds of antibiotic residues. Ind Saf Environ Prot, 2016, 42(5): 41
|
[4] |
李再興, 田寶闊, 左劍惡, 等. 抗生素菌渣處理處置技術進展. 環境工程, 2012, 30(2):72
Li Z X, Tian B K, Zuo J E, et al. Progress in treatment and disposal technology of antibiotic bacterial residues. Environ Eng, 2012, 30(2): 72
|
[5] |
苑麗梅. 頭孢菌渣中殘留效價檢測方法及菌渣資源化可行性研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2014
Yuan L M. Research on Detection Method of Cephalosporin Titer in Biopharmaceutical Residue and Resource Feasibility Study on Residue [Dissertation]. Harbin: Harbin Institute of Technology, 2014
|
[6] |
Caprariis B D, Filippis P D, Petrullo A, et al. Hydrothermal liquefaction of biomass: Influence of temperature and biomass composition on the bio-oil production. Fuel, 2017, 208: 618 doi: 10.1016/j.fuel.2017.07.054
|
[7] |
Demirbas A. Competitive liquid biofuels from biomass. Appl Energy, 2011, 88(1): 17 doi: 10.1016/j.apenergy.2010.07.016
|
[8] |
Ramsurn H, Gupta R B. Production of biocrude from biomass by acidic subcritical water followed by alkaline supercritical water two-step liquefaction. Energy Fuels, 2012, 26(4): 2365 doi: 10.1021/ef2020414
|
[9] |
Chen Y X, Ren X L, Wei Q F, et al. Hydrothermal liquefaction of Undaria pinnatifida residues to organic acids with recyclable trimethylamine. Bioresour Technol, 2016, 221: 477 doi: 10.1016/j.biortech.2016.09.073
|
[10] |
Batan L Y, Graff G D, Bradley T H. Techno-economic and Monte Carlo probabilistic analysis of microalgae biofuel production system. Bioresour Technol, 2016, 219: 45 doi: 10.1016/j.biortech.2016.07.085
|
[11] |
Jazrawi C, Biller P, He Y Y, et al. Two-stage hydrothermal liquefaction of a high-protein microalga. Algal Res, 2015, 8: 15 doi: 10.1016/j.algal.2014.12.010
|
[12] |
Shakya R, Whelen J, Adhikari S, et al. Effect of temperature and Na2CO3 catalyst on hydrothermal liquefaction of algae. Algal Res, 2015, 12: 80 doi: 10.1016/j.algal.2015.08.006
|
[13] |
孫向武, 王國鋒, 朱磊. 垃圾焚燒污染控制現狀及研究進展. 安徽農業科學, 2008, 36(2):670
Sun X W, Wang G F, Zhu L. Control status and research progress of the pollution in municipal solid waste incineration. J Anhui Agric Sci, 2008, 36(2): 670
|
[14] |
陳瑋. 玉米秸稈水熱法催化液化研究. 河南師范大學學報(自然科學版), 2011, 39(3):144
Chen W. Thermo-chemical liquefaction of corn stalk Wei. J Henan Norm Univ (Nat Sci Ed)
|
[15] |
Kumar M, Oyedun O A, Kumar A. A review on the current status of various hydrothermal technologies on biomass feedstock. Renew Sustain Energy Rev, 2018, 81: 1742 doi: 10.1016/j.rser.2017.05.270
|
[16] |
Ross A B, Biller P, Kubacki M L, et al. Hydrothermal processing of microalgae using alkali and organic acids. Fuel, 2010, 89(9): 2234 doi: 10.1016/j.fuel.2010.01.025
|
[17] |
Xue Y, Chen H Y, Zhao W N, et al. A review on the operating conditions of producing bio-oil from hydrothermal liquefaction of biomass. Int J Energy Res, 2016, 40(7): 865 doi: 10.1002/er.3473
|
[18] |
Chen Y, Mu R T, Min D Y, et al. Catalytic hydrothermal liquefaction for bio-oil production over CNTs supported metal catalysts. Chem Eng Sci, 2017, 161: 299 doi: 10.1016/j.ces.2016.12.010
|
[19] |
Reddy H K, Muppaneni T, Ponnusamy S, et al. Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp. Appl Energy, 2016, 165: 943 doi: 10.1016/j.apenergy.2015.11.067
|
[20] |
Raheem A, Wan Azlina W A K G, Taufiq Yap Y H, et al. Thermochemical conversion of microalgal biomass for biofuel production. Renew Sustain Energy Rev, 2015, 49: 990 doi: 10.1016/j.rser.2015.04.186
|
[21] |
Zou S P, Wu Y L, Yang M D, et al. Correction: Bio-oil production from sub- and supercritical water liquefaction of microalgae Dunaliella tertiolecta and related properties. Energy Environ Sci, 2015, 8(7): 2128 doi: 10.1039/C5EE90030A
|
[22] |
Muppaneni T, Reddy H K, Selvaratnam T, et al. Hydrothermal liquefaction of Cyanidioschyzon merolae and the influence of catalysts on products. Bioresour Technol, 2017, 223: 91 doi: 10.1016/j.biortech.2016.10.022
|
[23] |
Xu C B, Lad N. Production of heavy oils with high caloric values by direct liquefaction of woody biomass in sub/near-critical water. Energy Fuels, 2008, 22(1): 635 doi: 10.1021/ef700424k
|
[24] |
Zhou D, Zhang L, Zhang S C, et al. Hydrothermal liquefaction of macroalgae enteromorpha prolifera to bio-oil. Energy Fuels, 2010, 24(7): 4054 doi: 10.1021/ef100151h
|
[25] |
Yang W C, Li X G, Liu S S, et al. Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts. Energy Convers Manag, 2014, 87: 938 doi: 10.1016/j.enconman.2014.08.004
|
[26] |
Minowa T, Zhen F, Ogi T. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. J Supercrit Fluids, 1998, 13(1-3): 253 doi: 10.1016/S0896-8446(98)00059-X
|
[27] |
Fang Z, Minowa T, Smith R L, et al. Liquefaction and gasification of cellulose with Na2CO3 and Ni in subcritical water at 350 ℃. Ind Eng Chem Res, 2004, 43(10): 2454 doi: 10.1021/ie034146t
|
[28] |
Song C C, Hu H Q, Zhu S W, et al. Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water. Energy Fuels, 2004, 18(1): 90 doi: 10.1021/ef0300141
|
[29] |
Karag?z S, Bhaskar T, Muto A, et al. Low-temperature catalytic hydrothermal treatment of wood biomass: Analysis of liquid products. Chem Eng J, 2005, 108(1-2): 127 doi: 10.1016/j.cej.2005.01.007
|
[30] |
Wang F, Chang Z F, Duan P G, et al. Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils. Bioresour Technol, 2013, 149: 509 doi: 10.1016/j.biortech.2013.09.108
|
[31] |
Chen W, Yang H P, Chen Y Q, et al. Transformation of nitrogen and evolution of N-containing species during algae pyrolysis. Environ Sci Technol, 2017, 51(11): 6570 doi: 10.1021/acs.est.7b00434
|
[32] |
Toor S S, Rosendahl L, Rudolf A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 2011, 36(5): 2328 doi: 10.1016/j.energy.2011.03.013
|
[33] |
Yu Y, Wu H W. Significant differences in the hydrolysis behavior of amorphous and crystalline portions within microcrystalline cellulose in hot-compressed water. Ind Eng Chem Res, 2010, 49(8): 3902 doi: 10.1021/ie901925g
|
[34] |
Anastasakis K, Ross A B. Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition. Bioresour Technol, 2011, 102(7): 4876 doi: 10.1016/j.biortech.2011.01.031
|
[35] |
Bach Q V, de Sillero M V, Tran K Q, et al. Fast hydrothermal liquefaction of a Norwegian macro-alga: Screening tests. Algal Res, 2014, 6: 271 doi: 10.1016/j.algal.2014.05.009
|
[36] |
Ifrim G A, Titica M, Cogne G, et al. Dynamic pH model for autotrophic growth of microalgae in photobioreactor: A tool for monitoring and control purposes. AIChE J, 2014, 60(2): 585 doi: 10.1002/aic.14290
|
[37] |
Zhang B, Lin Q S, Zhang Q H, et al. Catalytic hydrothermal liquefaction of Euglena sp. microalgae over zeolite catalysts for the production of bio-oil. RSC Adv, 2017, 7(15): 8944
|
[38] |
Lee J, Choi D, Kwon E E, et al. Functional modification of hydrothermal liquefaction products of microalgal biomass using CO2. Energy, 2017, 137: 412 doi: 10.1016/j.energy.2017.03.077
|
[39] |
Yeh T M, Dickinson J G, Franck A, et al. Hydrothermal catalytic production of fuels and chemicals from aquatic biomass. J Chem Technol Biotechnol, 2013, 88(1): 13 doi: 10.1002/jctb.3933
|
[40] |
Valdez P J, Dickinson J G, Savage P E. Characterization of product fractions from hydrothermal liquefaction of nannochloropsis sp. and the influence of solvents. Energy Fuels, 2011, 25(7): 3235 doi: 10.1021/ef2004046
|