<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
ZHONG Xue-hu, CHEN Ling-ling, HAN Jun-wei, LIU Wei, JIAO Fen, QIN Wen-qing. Overview of present situation and technologies for the recovery of spent lithium-ion batteries[J]. Chinese Journal of Engineering, 2021, 43(2): 161-169. doi: 10.13374/j.issn2095-9389.2020.09.11.004
Citation: ZHONG Xue-hu, CHEN Ling-ling, HAN Jun-wei, LIU Wei, JIAO Fen, QIN Wen-qing. Overview of present situation and technologies for the recovery of spent lithium-ion batteries[J]. Chinese Journal of Engineering, 2021, 43(2): 161-169. doi: 10.13374/j.issn2095-9389.2020.09.11.004

Overview of present situation and technologies for the recovery of spent lithium-ion batteries

doi: 10.13374/j.issn2095-9389.2020.09.11.004
More Information
  • With the rapid population growth, economic development, and technological progress around the world today, energy consumption levels are becoming increasingly huge. Most of the energy consumed comes from coal, oil, natural gas, and other primary energy sources that lead to the greenhouse effect, acid rain, photochemical smog, and other environment problems. Therefore, the identification of greener energy resources has become humanity’s great challenge. To reduce the use of primary energy sources, new types of energy have been proposed that are associated with decreased environmental pollution. However, these new energy sources typically require effective storage equipment to facilitate the use of solar, wind or water-driven energy. Lithium-ion batteries (LIBs) were developed to store electrical energy, and due to their unique advantages, today they are widely used in portable devices, electric vehicles, and all kinds of electronic equipment. The advantages of LIBs include a high specific capacity, good cycle performance, and long lifespan. Although life on Earth is greener by the use of LIBs, with the rapidly increasing energy consumption, more spent LIBs are being produced, which contain a range of valuable metals (Cu, Al, Co, Mn, Ni, Li) and harmful substances (HF, organic substances). If these materials are not treated properly, much harm will result to both human beings and the natural environment, and this would also be a great waste of valuable metals. The recovery of spent LIBs has become a research hotspot among the scientific and business communities. To support the discovery of new methods and concepts in the recovery of spent LIBs, in this paper, we reviewed the various methods available and discussed their advantages and disadvantages in detail. Based on this review, we consider the approach that uses a combination of chemical and physical technologies for the recovery of spent LIBs to be the most promising.

     

  • loading
  • [1]
    吳志鋒. 我國發展低碳經濟的戰略與對策探究. 中外企業家, 2016(17):32 doi: 10.3969/j.issn.1000-8772.2016.17.021

    Wu Z F. Strategy and countermeasures for the development of low carbon economy in China. Chin Foreign Entrepreneurs, 2016(17): 32 doi: 10.3969/j.issn.1000-8772.2016.17.021
    [2]
    代曉東, 于睿, 劉曉娜, 等. 2017年全球能源統計與未來展望. 天然氣與石油, 2019, 37(1):94 doi: 10.3969/j.issn.1006-5539.2019.01.016

    Dai X D, Yu R, Liu X N, et al. Statistics and future outlook of global energy in 2007. Nat Gas Oil, 2019, 37(1): 94 doi: 10.3969/j.issn.1006-5539.2019.01.016
    [3]
    陳麗芳. 釕金屬配合物光驅動水氧化反應的研究[學位論文]. 大連: 大連理工大學, 2016

    Chen L F. Photo-induced Water Oxidation by Ru Complexes [Dissertation]. Dalian: Dalian University of Technology, 2016
    [4]
    趙泓明. 針對新時期新能源風力發電相關技術討論分析. 科技創新導報, 2018(1):67

    Zhao H M. Discussion and analysis of on wind power technology in the new era. Sci Technol Innovation Herald, 2018(1): 67
    [5]
    張怡. 新能源風光發電預測技術的發展及應用. 浙江水利水電學院學報, 2018, 30(1):68 doi: 10.3969/j.issn.2095-7092.2018.01.015

    Zhang Y. Development and application of forecasting technology for wind and photovoltaic power generation. J Zhejiang Water Conserv Hydropower College, 2018, 30(1): 68 doi: 10.3969/j.issn.2095-7092.2018.01.015
    [6]
    蔣旭吟, 朱紅, 徐善紅, 等. 電動汽車鋰電池均衡拓撲及策略的研究進展. 時代汽車, 2019(1):73 doi: 10.3969/j.issn.1672-9668.2019.01.031

    Jiang X Y, Zhu H, Xu S H, et al. Research progress of lithium battery equalization topology and strategy for electric vehicles. Auto Time, 2019(1): 73 doi: 10.3969/j.issn.1672-9668.2019.01.031
    [7]
    鐘雪虎, 焦芬, 劉桐, 等. 廢舊鋰離子電池回收工藝概述. 電池, 2018, 48(1):63

    Zhong X H, Jiao F, Liu T, et al. Overview of recovery technology for spent Li-ion battery. Battery Bimonthly, 2018, 48(1): 63
    [8]
    陳芳. 石墨烯負載硫化亞錫復合材料及儲鋰機理研究[學位論文]. 上海: 上海大學, 2018

    Chen F. Synthesis and Electrochemical Performance Study of Tin Sulfide/Graphene Composites [Dissertation]. Shanghai: Shanghai University, 2018
    [9]
    安富強, 趙洪量, 程志, 等. 純電動車用鋰離子電池發展現狀與研究進展. 工程科學學報, 2019, 41(1):22

    An F Q, Zhao H L, Cheng Z, et al. Development status and research progress of power battery for pure electric vehicles. Chin J Eng, 2019, 41(1): 22
    [10]
    鉅大LARGE. 中國已成為全球鋰電池發展最活躍地區[EB/OL]. 鉅大鋰電 (2018-10-25) [2020-07-20]http://www.juda.cn/news/40181.html

    Ju Da Large. China has become the most active area of lithium battery development in the world [EB/OL]. Ju Da lithium (2018-10-25)[2020-07-20]. http://www.juda.cn/news/40181.html
    [11]
    高工鋰電網. GGII: 2018年國內鋰電池理論報廢量24.1萬[EB/OL]. 高工鋰電網 (2019-03-18) [2020-07-20]. https://auto.gasgoo.com/News/2019/03/180845434543I70094215C501.shtml

    High tech lithium grid. GGII: Theoretical scrapping of domestic lithium batteries in 2018 are 241000 t [EB/OL]. High tech lithium grid (2019-03-18) [2020-07-20]. https://auto.gasgoo.com/News/2019/03/180845434543I70094215C501.shtml
    [12]
    鉅大LARGE. 2019年動力電池回收需求和市場規模分析[EB/OL]. 鉅大鋰電 (2019-10-21) [2020-07-20]http://www.juda.cn/news/105680.html

    Ju Da Large. Analysis on needs and market scale of lithium ion recycling in 2019 [EB/OL]. Ju Da lithium (2019-10-27) [2020-07-20]. ]. http://www.juda.cn/news/105680.html
    [13]
    矯坤遠. 新能源汽車動力電池回收利用存風險建議預先建立市級網絡予以解決. 資源再生, 2018(8):34 doi: 10.3969/j.issn.1673-7776.2018.08.010

    Jiao K Y. It’s suggested to establish a city-level network to avoid the risk of power battery recycling and storage of new energy vehicle. Resource Recycl, 2018(8): 34 doi: 10.3969/j.issn.1673-7776.2018.08.010
    [14]
    趙煜娟, 夏明華, 于洋, 等. 失效動力鋰離子電池再利用和有用金屬回收技術研究. 再生資源與循環經濟, 2014, 7(7):27 doi: 10.3969/j.issn.1674-0912.2014.07.009

    Zhao Y J, Xia M H, Yu Y, et al. Study on the reuse and valuable metals recovery of spent power lithium-ion batteries. Recycl Res, 2014, 7(7): 27 doi: 10.3969/j.issn.1674-0912.2014.07.009
    [15]
    唐子威, 侯旭, 裴波, 等. 鋰離子電池電解液研究進展. 船電技術, 2017, 37(6):14

    Tang Z W, Hou X, Pei B, et al. Research progress of the electrolyte for lithium-ion battery. Marine Electr Electron Technol, 2017, 37(6): 14
    [16]
    侯永珍. 新型高電壓電解液用于鋰電池的研究進展. 中國校外教育, 2018(9):114

    Hou Y Z. Research progress of novel high voltage electrolytes for lithium batteries. Educ Chin After-school, 2018(9): 114
    [17]
    彭昱, 郭明明, 應迪文. 48 V 軟包錳酸鋰電動車動力電池的梯次利用. 環境工程學報, 2018, 12(12):3498 doi: 10.12030/j.cjee.201806147

    Peng Y, Guo M M, Ying D W. Echelon use of 48 V flexible packing power Li-ion manganite battery in electric vehicles. Chin J Environ Eng, 2018, 12(12): 3498 doi: 10.12030/j.cjee.201806147
    [18]
    李臻, 董會超. 退役鋰離子動力電池梯次利用可行性研究. 電源技術, 2016, 40(8):1582 doi: 10.3969/j.issn.1002-087X.2016.08.012

    Li Z, Dong H C. Feasibility study of secondary utilization of retired power lithium-ion battery. Chin J Power Sources, 2016, 40(8): 1582 doi: 10.3969/j.issn.1002-087X.2016.08.012
    [19]
    鄧浩然. 鋰離子動力電池組健康狀態評價及梯次利用[學位論文]. 保定: 華北電力大學, 2018

    Deng H R. Study on State of Health Evaluation for Lithium Ion Power Battery Pack and Echelon Utilization [Dissertation]. Baoding: North China Electric Power University, 2018
    [20]
    賓智勇, 劉景槐, 吳海國, 等. 廢舊鋰離子電池的綜合利用試驗研究. 湖南有色金屬, 2008, 24(5):27 doi: 10.3969/j.issn.1003-5540.2008.05.008

    Bin Z Y, Liu J H, Wu H G, et al. Study on comprehensive utilization of spent lithium ion secondary battery. Hunan Nonferrous Met, 2008, 24(5): 27 doi: 10.3969/j.issn.1003-5540.2008.05.008
    [21]
    潘英俊. 以磷酸鐵鋰為正極材料的廢舊鋰離子電池回收及再利用[學位論文]. 哈爾濱: 哈爾濱工業大學, 2012

    Pan Y J. Recycling and Reuse of Spent Lithium-ion Battery that is used LiFePO4 as Cathode Material [Dissertation]. Harbin: Harbin Institute of Technology, 2012
    [22]
    宋秀玲, 戴書琪, 徐永勝, 等. 廢舊鋰離子電池放電的實驗研究. 應用化工, 2015, 44(4):594

    Song X L, Dai S Q, Xu Y S, et al. Experimental study on the discharge of the waste lithium ion battery. Appl Chem Ind, 2015, 44(4): 594
    [23]
    陳思錦, 沈棒, 孫同華, 等. 常規放電和浸漬放電對廢舊鋰電池正極材料熱處理后未過篩率的影響 // 中國環境科學學會2016年學術年會. 海口, 2016: 3514

    Chen S J, Shen B, Sun T H, et al. Effect of conventional discharge and impregnation discharge on the UN sieving rate of spent lithium battery cathode materials after heat treatment // 2016 Annual Academic Meeting of Chinese Society of Environmental Sciences. Haikou, 2016: 3514
    [24]
    張勇耀, 項文勤, 趙衛娟, 等. 廢舊鋰離子電池電解液回收研究. 浙江化工, 2018, 49(8):12 doi: 10.3969/j.issn.1006-4184.2018.08.005

    Zhang Y Y, Xiang W Q, Zhao W J, et al. Research situation of waste lithium-ion battery electrolyte recycling. Zhejiang Chem Ind, 2018, 49(8): 12 doi: 10.3969/j.issn.1006-4184.2018.08.005
    [25]
    嚴紅. 廢舊鋰離子電池電解液的回收方法: 中國專利, CN104282962B. 2015-1-14

    Yan H. Recovery Method of Spent Lithium Ion Battery Electrolyte: China Patent, CN104282962B. 2015-1-14
    [26]
    趙陽, 刁泉, 張濤. 一種安全易于實施的廢舊鋰離子電池的回收處理工藝: 中國, CN201610101058.4. 2016-8-10

    Zhao Y, Diao Q, Zhang T. A Safe and Easy to Implement Recycling Process for Spent Lithium-Ion Batteries: China Patent, CN201610101058.4. 2016-8-10
    [27]
    Mu D Y, Liu Y L, Li R H, et al. Transcritical CO2 extraction of electrolytes for lithium-ion batteries: optimization of the recycling process and quality-quantity variation. New J Chem, 2017, 41(15): 7177
    [28]
    Liu Y L, Mu D Y, Zheng R J, et al. Supercritical CO2 extraction of organic carbonate-based electrolytes of lithium-ion batteries. RSC Adv, 2014, 4(97): 54525
    [29]
    Liu Y L, Mu D Y, Li R H, et al. Purification and characterization of reclaimed electrolytes from spent lithium-ion batteries. J Phys Chem C, 2017, 121(8): 4181
    [30]
    金泳勛, 松田光明, 董曉輝, 等. 用浮選法從廢鋰離子電池中回收鋰鈷氧化物. 國外金屬礦選礦, 2003(7):32

    Jin Y X, Song T G M, Dong X H, et al. Recovery of lithium cobalt oxide from spent lithium ion batteries by flotation. Metallic Ore Dressing Abroad, 2003(7): 32
    [31]
    Bertuol D A, Toniasso C, Jimenez B M, et al. Application of spouted bed elutriation in the recycling of lithium ion batteries. J Power Sources, 2015, 275: 627
    [32]
    Weng Y Q, Xu S M, Huang G Y, et al. Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)1?xMgx]O2 prepared from spent lithium ion batteries. J Hazard Mater, 2013, 246-247: 163
    [33]
    Pant D, Dolker T. Green and facile method for the recovery of spent lithium nickel manganese cobalt oxide (NMC) based lithium ion batteries. Waste Manage, 2017, 60: 689
    [34]
    Liu W, Zhong X H, Han J W, et al. Kinetic study and pyrolysis behaviors of spent LiFePO4 batteries. ACS Sustainable Chem Eng, 2019, 7(1): 1289
    [35]
    Jha A K, Jha M K, Kumari A, et al. Selective separation and recovery of cobalt from leach liquor of discarded Li-ion batteries using thiophosphinic extractant. Sep Purif Technol, 2013, 104: 160
    [36]
    Yang Y, Guo J Z, Gu Z Y, et al. Effective recycling of the whole cathode in spent lithium ion batteries: from the widely used oxides to high-energy/stable phosphates. ACS Sustainable Chem Eng, 2019, 7(14): 12014
    [37]
    Li L, Ge J, Chen R J, et al. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manage, 2010, 30(12): 2615
    [38]
    Nayaka G P, Pai K V, Manjanna J, et al. Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries. Waste Manage, 2016, 51: 234
    [39]
    Li L, Dunn J B, Zhang X X, et al. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. J Power Sources, 2013, 233: 180
    [40]
    姚路. 廢舊鋰離子電池正極材料回收再利用研究[學位論文]. 新鄉: 河南師范大學, 2016

    Yao L. Study on Recycling of Cathode Material from Waste Lithium Ion Batteries [Dissertation]. Xinxiang: Henan Normal University, 2016
    [41]
    王芳, 張邦勝, 劉貴清, 等. 廢舊動力電池資源再生利用技術進展. 中國資源綜合利用, 2018, 36(10):106 doi: 10.3969/j.issn.1008-9500.2018.10.034

    Wang F, Zhang B S, Liu G Q, et al. Progress in recycling technology of waste power battery resources. China Resour Comprehens Utiliz, 2018, 36(10): 106 doi: 10.3969/j.issn.1008-9500.2018.10.034
    [42]
    劉貴清, 王芳. 鋰離子動力電池濕法回收工藝研究現狀. 中國資源綜合利用, 2018, 36(5):88 doi: 10.3969/j.issn.1008-9500.2018.05.028

    Liu G Q, Wang F. Status of power lithium ion battery recycle technology. China Resour Comprehens Utiliz, 2018, 36(5): 88 doi: 10.3969/j.issn.1008-9500.2018.05.028
    [43]
    鉅大LARGE. 廢舊鋰電池回收后如何處理與加工[EB/OL]. 鉅大鋰電 (2019-07-31) [2020-07-20]http://www.juda.cn/news/92717.html

    Ju Da Large. How to deal with and process waste lithium batteries after recycling [EB/OL]. Ju Da lithium (2019-07-31) [2020-07-20]. http://www.juda.cn/news/92717.html
    [44]
    Huang Y F, Han G H, Liu J T, et al. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process. J Power Sources, 2016, 325: 555
    [45]
    Zhong X H, Liu W, Han J W, et al. Pyrolysis and physical separation for the recovery of spent LiFePO4 batteries. Waste Manage, 2019, 89: 83
    [46]
    張建. 電解剝離-生物質酸浸回收廢舊鋰離子電池中的鈷[學位論文]. 長沙: 中南大學, 2014

    Zhang J. Recycling Cobalt from Spent Li-ion Batteries by Electrolytic Stripping and Biomass Acid Leaching Method [Dissertation]. Changsha: Central South University, 2014
    [47]
    鄧孝榮, 曾桂生, 李卓, 等. 氧化亞鐵硫桿菌浸出廢舊鋰離子電池的工藝條件. 環境化學, 2012, 31(9):1381

    Deng X R, Zeng G S, Li Z, et al. Optimization conditions of bioleaching spent lithium-ion batteries by thiobacillus ferrooxidans. Environ Chem, 2012, 31(9): 1381
    [48]
    辛亞云. 廢舊鋰離子電池中有價金屬離子的生物淋濾及其機理研究[學位論文]. 北京: 北京理工大學, 2016

    Xin Y Y. Study on Bioleaching of Valuable Metal Ions from Spent Li-ion Batteries and Mechanism Exploration [Dissertation]. Beijing: Beijing Institute of Technology, 2016
    [49]
    Liang H J, Hou B H, Li W H, et al. Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: in operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries. Energy Environ Sci, 2019, 12(12): 3575
    [50]
    Nie X J, Xi X T, Yang Y, et al. Recycled LiMn2O4 from the spent lithium ion batteries as cathode material for sodium ion batteries: Electrochemical properties, structural evolution and electrode kinetics. Electrochim Acta, 2019, 320: 134626
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)

    Article views (2842) PDF downloads(745) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频