<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
ZHANG Guang-tai, CHEN Yong, LU Hai-bo, LI Xue-fan. Fractal characteristics of fiber lithium slag concrete cracks under sulfate attack[J]. Chinese Journal of Engineering, 2022, 44(2): 208-216. doi: 10.13374/j.issn2095-9389.2020.09.10.001
Citation: ZHANG Guang-tai, CHEN Yong, LU Hai-bo, LI Xue-fan. Fractal characteristics of fiber lithium slag concrete cracks under sulfate attack[J]. Chinese Journal of Engineering, 2022, 44(2): 208-216. doi: 10.13374/j.issn2095-9389.2020.09.10.001

Fractal characteristics of fiber lithium slag concrete cracks under sulfate attack

doi: 10.13374/j.issn2095-9389.2020.09.10.001
More Information
  • Corresponding author: E-mail: zgtlxh@126.com
  • Received Date: 2020-09-08
    Available Online: 2021-01-04
  • Publish Date: 2022-02-15
  • Natural corrosion of concrete structure due to sulfate poses a serious threat to people's lives and property. Therefore, it is of great practical significance to study the phenomenon of sulfate corrosion on concrete. In order to explore the mechanical properties of a new type of concrete corroded by sulfate, a full immersion accelerated erosion method was used with 5% sulfate solution. Erosion tests were performed on 11 groups of polypropylene fiber reinforced concrete (PC) specimens, 11 groups of polypropylene fiber lithium slag concrete (PLiC) specimens, 8 PC columns with large eccentricity, and 8 PLiC large eccentric columns. The mechanical properties of concrete under different erosion times are obtained. Based on the fractal theory, the fractal characteristics of surface crack distribution of specimens and columns are analyzed. In addition, the relationship between the fractal dimension of surface crack and erosion time, compressive strength, and ultimate bearing capacity is discussed. Results show that the compressive strength of PC and PLiC initially increases and then decreases with increased erosion days, reaching a maximum of 120 days. The distribution of surface cracks is observed to be fractal when they are broken. With increased erosion days, fractal dimension of surface cracks initially increases, then decreases, and finally increases again. On the other hand, a decreasing trend of fractal dimension of surface cracks is observed with increased compressive strength. The ultimate bearing capacity of PC and PLiC columns with large eccentricity increases first and then decreases with erosion days. Addition of lithium slag is observed to improve the sulfate resistance of polypropylene fiber reinforced concrete columns. With broken members, fractal dimension of surface cracks presents a rising trend of shock with sulfate erosion days. Results signify that fractal characteristics of concrete surface cracks can be used as one of the indexes to determine the damage degree of members, which can provide reference for the prediction of bearing capacity and service life of concrete structures in the future.

     

  • loading
  • [1]
    韓宇棟, 劉暢, 王振波, 等. 硫酸鹽干濕循環下ECC的軸壓力學行為. 建筑材料學報, 2020, 23(4):846 doi: 10.3969/j.issn.1007-9629.2020.04.016

    Han Y D, Liu C, Wang Z B, et al. Uniaxial compressive behavior of ECC under sulfate erosion in drying-wetting cycles. J Build Mater, 2020, 23(4): 846 doi: 10.3969/j.issn.1007-9629.2020.04.016
    [2]
    張中亞, 周建庭, 鄒楊, 等. 硫酸鹽侵蝕對混凝土抗剪性能的影響. 土木工程學報, 2020, 53(7):64

    Zhang Z Y, Zhou J T, Zou Y, et al. Effect of sulfate attack on the shear performance of concrete. China Civil Eng J, 2020, 53(7): 64
    [3]
    Wee T H, Suryavanshi A K, Wong S F, et al. Sulfate resistance of concrete containing mineral admixtures. ACI Mater J, 2000, 97(5): 536
    [4]
    Mangat P S, Khatib J M. Influence of fly-ash, silica fume, and slag on sulfate resistance of concrete. ACI Mater J, 1993, 92(5): 542
    [5]
    白衛峰, 劉霖艾, 管俊峰, 等. 基于統計損傷理論的硫酸鹽侵蝕混凝土本構模型研究. 工程力學, 2019, 36(2):66 doi: 10.6052/j.issn.1000-4750.2017.09.0734

    Bai W F, Liu L A, Guan J F, et al. The constitutive model of concrete subjected to sulfate attack based on statistical damage theory. Eng Mech, 2019, 36(2): 66 doi: 10.6052/j.issn.1000-4750.2017.09.0734
    [6]
    寇佳亮, 劉菲菲, 趙丹丹, 等. 常溫養護條件下活性粉末混凝土抗硫酸鹽侵蝕性能試驗研究. 自然災害學報, 2020, 29(3):76

    Kou J L, Liu F F, Zhao D D, et al. Experimental study on resistance to sulfate attack of active powder concrete under normal temperature curing condition. J Nat Disast, 2020, 29(3): 76
    [7]
    石亮, 謝德擎, 王學明, 等. 抗侵蝕抑制劑對混凝土吸水性能及抗鹽結晶性能的影響. 材料導報, 2020, 34(14):14093 doi: 10.11896/cldb.19060175

    Shi L, Xie D, Wang X M, et al. Effect of liquid erosion inhibitor on water absorption and salt crystallization resistance of concrete. Materi Rev, 2020, 34(14): 14093 doi: 10.11896/cldb.19060175
    [8]
    李北星, 方晴, 方鵬. 大摻量摻合料混凝土半浸泡于硫酸鹽溶液中的耐久性. 哈爾濱工程大學學報, 2020, 41(6):892

    Li B X, Fang Q, Fang P. Durability of high-volume mineral admixture concrete half immersed in sodium sulfate solution. J Harbin Eng Univ, 2020, 41(6): 892
    [9]
    逯靜洲, 田立宗, 劉瑩, 等. 軸壓與硫酸鹽實時耦合作用下混凝土耐久性試驗研究. 應用基礎與工程科學學報, 2020, 28(2):386

    Lu J Z, Tian L Z, Liu Y, et al. Experimental study of the durability of concrete under coupling effect of axial compression and sulfate attack. J Basic Sci Eng, 2020, 28(2): 386
    [10]
    肖前慧, 曹志遠, 關虓, 等. 凍融與硫酸鹽侵蝕耦合作用下再生混凝土劣化規律. 硅酸鹽通報, 2020, 39(2):352

    Xiao Q H, Cao Z Y, Guan X, et al. Degradation law of recycled concrete under the coupling of freeze-thaw and sulfate erosion. Bull Chin Ceram Soc, 2020, 39(2): 352
    [11]
    李保亮, 霍彬彬, 尤南喬, 等. 不同養護條件下鋼渣/礦渣復合水泥膠砂的耐硫酸鹽侵蝕性能. 東南大學學報(自然科學版), 2019, 49(6):1144 doi: 10.3969/j.issn.1001-0505.2019.06.018

    Li B L, Huo B B, You N Q, et al. Sulfate resistance of steel slag blended / GGBFS blended cement mortars under different curing conditions. J Southeast Univ Nat Sci, 2019, 49(6): 1144 doi: 10.3969/j.issn.1001-0505.2019.06.018
    [12]
    Tuerkmen I, Gavgali M. Influence of mineral admixtures on the some properties and corrosion of steel embedded in sodium sulfate solution of concrete. Mater Lett, 2003, 57(21): 3222 doi: 10.1016/S0167-577X(03)00039-9
    [13]
    Mandelbrot B B, Passoja D E, Paullay A J. Fractal character of fracture surfaces of metals. Nature, 1984, 308(5961): 721 doi: 10.1038/308721a0
    [14]
    Armandei M, de Souza Sanchez Filho E. Correlation between fracture roughness and material strength parameters in SFRCs using 2D image analysis. Constr Build Mater, 2017, 140: 82 doi: 10.1016/j.conbuildmat.2017.02.103
    [15]
    Yan A, Wu K R, Zhang D, et al. Influence of concrete composition on the characterization of fracture surface. Cem Concr Compos, 2003, 25(1): 153 doi: 10.1016/S0958-9465(02)00004-5
    [16]
    Ince R G?r M, Alyama? K E, et al. Multi-fractal scaling law for split strength of concrete cubes. Mag Concr Res, 2016, 68(3): 141 doi: 10.1680/macr.15.00070
    [17]
    Konkol J, Prokopski G. Fracture toughness and fracture surfaces morphology of metakaolinite-modified concrete. Constr Build Mater, 2016, 123: 638 doi: 10.1016/j.conbuildmat.2016.07.025
    [18]
    成盛, 金南國, 田野, 等. 混凝土裂縫特征參數的圖形化定量分析新方法. 浙江大學學報(工學版), 2011, 45(6):1062 doi: 10.3785/j.issn.1008-973X.2011.06.017

    Cheng S, Jin N G, Tian Y, et al. New graphic method for quantitatively analyzing characteristic parameters of concrete cracks. J Zhejiang Univ Eng Sci, 2011, 45(6): 1062 doi: 10.3785/j.issn.1008-973X.2011.06.017
    [19]
    曹茂森, 任青文. 鋼筋混凝土結構損傷檢測的分形特征因子. 土木工程學報, 2005, 38(12):59 doi: 10.3321/j.issn:1000-131X.2005.12.010

    Cao M S, Ren Q W. Damage detection of reinforced concrete structures based on fractal characteristic factor. China Civil Eng J, 2005, 38(12): 59 doi: 10.3321/j.issn:1000-131X.2005.12.010
    [20]
    焦楚杰, 李習波, 程從密, 等. 基于分形理論的高強混凝土動態損傷本構關系. 爆炸與沖擊, 2018, 38(4):925

    Jiao C J, Li X B, Cheng C M, et al. Dynamic damage constitutive relationship of high strength concrete based on fractal theory. Explos Shock Waves, 2018, 38(4): 925
    [21]
    陳萬春, 師暉軍, 晁宗棋. 基于分形理論的鋼筋混凝土梁式橋裂縫發育特征. 長安大學學報(自然科學版), 2003, 23(6):44

    Chen W C, Shi H J, Chao Z Q. Developing nature of cracks in reinforced concrete beam bridge with fractal theory. J Chang'an Univ Nat Sci, 2003, 23(6): 44
    [22]
    李艷艷, 戎賢, 王鐵成. 高強箍筋混凝土梁裂縫分布的分形特征. 工程力學, 2009, 26(增刊1): 72

    Li Y Y, Rong X, Wang T C. Fractal characteristics of crack distribution of concrete beams with high strength stirrup. Eng Mech, 2009, 26(Suppl1): 72
    [23]
    范穎芳, 周晶, 馮新. 受腐蝕鋼筋混凝土構件破壞過程的分形行為. 工程力學, 2002, 19(5):123 doi: 10.3969/j.issn.1000-4750.2002.05.023

    Fan Y F, Zhou J, Feng X. Fractals in failure of corroded reinforced concrete members. Eng Mech, 2002, 19(5): 123 doi: 10.3969/j.issn.1000-4750.2002.05.023
    [24]
    欒海洋, 范穎芳, 王大為, 等. 基于分形理論的CFRP布增強混凝土梁抗彎性能研究. 工程力學, 2015, 32(4):160

    Luan H Y, Fan Y F, Wang D W, et al. Study on the flexural behavior of the CFRP-reinforced concrete beam with fractal theory. Eng Mech, 2015, 32(4): 160
    [25]
    中華人民共和國住房和城鄉建設部. GB/T50081—2019混凝土物理力學性能試驗方法標準. 北京: 中國建筑工業出版社, 2019

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB50081—2019 Standard for Test Methods of Concrete Physical and Mechanical Properties. Beijing: China Architecture & Building Press, 2019
    [26]
    中華人民共和國住房和城鄉建設部. GB/T50152—2012混凝土結構試驗方法標準. 北京: 中國建筑工業出版社, 2012

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB/T50152—2012 Standard for Test Method of Concrete Structures. Beijing: China Architecture & Building Press, 2012
    [27]
    Mandelbrot B B. The Fractal Geometry of Nature. San Francisco: W. H. Freeman and Company, 1982
    [28]
    劉娟紅, 趙力, 紀洪廣. 初始損傷對混凝土硫酸鹽腐蝕劣化性能的影響. 工程科學學報, 2017, 39(8):1278

    Liu J H, Zhao L, Ji H G. Influence of initial damage on degradation and deterioration of concrete under sulfate attack. Chin J Eng, 2017, 39(8): 1278
    [29]
    溫勇, 徐虎, 韓東明. 鋰渣粉對水泥基材料抗硫酸鹽侵蝕性能的影響. 混凝土, 2010(12):90 doi: 10.3969/j.issn.1002-3550.2010.12.029

    Wen Y, Xu H, Han D M. Study on the effect of lithium slag powders upon the sulfate corrosion resistance of cement material. Concrete, 2010(12): 90 doi: 10.3969/j.issn.1002-3550.2010.12.029
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(14)  / Tables(5)

    Article views (1403) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频