<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
WANG Zhen, LING Yong-yi, WANG Zi-hao, ZHANG Jing, JIA Quan-li, LIU Xin-hong. Research development in preparation of TiC materials via molten salt-assisted method[J]. Chinese Journal of Engineering, 2021, 43(1): 97-107. doi: 10.13374/j.issn2095-9389.2020.08.01.001
Citation: WANG Zhen, LING Yong-yi, WANG Zi-hao, ZHANG Jing, JIA Quan-li, LIU Xin-hong. Research development in preparation of TiC materials via molten salt-assisted method[J]. Chinese Journal of Engineering, 2021, 43(1): 97-107. doi: 10.13374/j.issn2095-9389.2020.08.01.001

Research development in preparation of TiC materials via molten salt-assisted method

doi: 10.13374/j.issn2095-9389.2020.08.01.001
More Information
  • Titanium carbide is a typical transition metal carbide that has been widely used in the machinery manufacturing, chemical, electronic, and metallurgical industries because of its many unique properties such as high hardness, high melting point, good wear resistance, and good electrical conductivity. With continuous expansion in the applications of titanium carbide materials, the market has developed new requirements on the purity, particle size, particle size distribution, and microstructure of titanium carbide materials. Addition of titanium carbide to the surface of some materials or plated substrates to alter the internal or surface microstructure of the materials and improve the physical or chemical properties of the materials can provide new application prospects in metal matrix composites, ceramic composites, and coating materials. Titanium carbide materials possessing better dispersion, uniform particle size, good crystallization, and good stoichiometry are desired in biosensors, hard coatings, composite electrodes, electrocatalytic active materials, foam stabilizers, and other applications. Titanium carbide is synthesized through various methods such as carbothermal reduction, mechanical alloying, self-propagation high-temperature synthesis, and molten salt-assisted synthesis. Often, synthesis methods of titanium carbide require high reaction temperatures and result in the poor dispersion of powder particles. Therefore, an energy-saving method having high efficiency and in which the purity and morphology of the powder particles can be controlled needs to be developed. This method can be used to develop various kinds of powder materials. Among various preparation methods, molten salt-assisted synthesis (MSS) has gained an increasing amount of attention due to its low preparation temperature, short reacting time, and high efficiency. In recent years, tremendous progress has been made in the development of the MSS method. The MSS method can be used to prepare titanium carbide powders, titanium carbide coatings, and titanium carbide fibers with varying particle sizes, morphologies, and purities. This review offered a retrospection on the research studies conducted on the preparation of titanium carbide materials via molten salt-assisted methods in China and worldwide, and this review provided elaborate descriptions about the advantages and disadvantages of various preparation methods such as carbon/metal thermal reduction, electrochemistry, direct carbonation, and microwave heating. This review mainly focused on the preparation process, preparation principle, purity of products, and morphology. In this review, key issues such as eliminating impurities, increasing purity of titanium carbide, and controlling the morphology of titanium carbide were discussed, and relevant researches topics that can be done in the future were proposed. This review helps provide a reference for the low-cost and high efficiency production of high-quality titanium carbide materials.

     

  • loading
  • [1]
    李喜坤, 修稚萌, 孫旭東, 等. 淀粉還原氫化鈦制備Ti(C, N)納米粉. 東北大學學報, 2003, 24(3):272

    Li X K, Xiu Z M, Sun X D, et al. Synthesis of titanium carbonitride nanopowders. J Northeast Univ Nat Sci, 2003, 24(3): 272
    [2]
    Wu K H, Jiang Y, Jiao S Q, et al. Preparations of titanium nitride, titanium carbonitride and titanium carbide via a two-step carbothermic reduction method. J Solid State Chem, 2019, 227: 793
    [3]
    Koc R. Kinetics and phase evolution during carbothermal synthesis of titanium carbide from ultrafine titania/carbon mixture. J Mater Sci, 1998, 33(4): 1049
    [4]
    Gotoh Y, Fujimura K, Koike M, et al. Synthesis of titanium carbide from a composite of TiO2 nanoparticles/methyl cellulose by carbothermal reduction. Mater Res Bull, 2001, 36(13-14): 2263
    [5]
    Ivasishin O M, Markovsky P E, Savvakin D G, et al. Multi-layered structures of Ti?6Al?4V alloy and TiC and TiB composites on its base fabricated using blended elemental powder metallurgy. J Mater Process Technol, 2019, 269: 172
    [6]
    李雪. 基于Ti–Si合金的TiC熔鹽法合成制備[學位論文]. 武漢: 武漢科技大學, 2011

    Li X. Preparation of TiC Molten Salt Based on Ti–Si Alloy[Dissertation]. Wuhan: Wuhan University of Science and Technology, 2011
    [7]
    Sun H Y, Kong X, Sen W, et al. Preparation of TiC powders by carbothermic reduction technique at vacuum condition. Adv Mater Res, 2015, 1089: 142
    [8]
    謝真, 周大利, 楊為中, 等. 真空原位碳熱還原法制備納米碳化鈦粉體. 鋼鐵釩鈦, 2017, 38(1):38 doi: 10.7513/j.issn.1004-7638.2017.01.007

    Xie Z, Zhou D L, Yang W Z, et al. Preparation of nano-TiC powders by in-situ carbothermal method in vacuum. Iron Steel Vanadium Titanium, 2017, 38(1): 38 doi: 10.7513/j.issn.1004-7638.2017.01.007
    [9]
    魏紅菊, 吳一, 龍飛, 等. 超細TiC粉體制備的研究現狀及展望. 材料導報, 2008, 22(專輯): 112

    Wei H J, Wu Y, Long F, et al. Research status and prospect of preparation of ultrafine TiC powder. Mater Rev, 2008, 22(Spec): 112
    [10]
    Kim B S, Woo Y C, Kim D J. Synthesis of ultra fine TiC powders by carbothermal reduction. Mater Sci Forum, 2007, 534-536: 141
    [11]
    Arendt R H. Liquid-phase sintering of magnetically isotropic and anisotropic compacts of BaFe12O19 and SrFe12O19. J Appl Phys, 1973, 44(7): 3300
    [12]
    張舉. 熔鹽輔助制備SiC納米線及其光致發光性能研究[學位論文]. 鄭州: 鄭州大學, 2016

    Zhang J. Molten Salt Assisted Synthesis of SiC Nanowires and Their Photoluminescence Properties[Dissertation]. Zhengzhou: Zhengzhou University, 2016
    [13]
    陳偉利. 無機材料粉體制備中使用熔鹽法的探究. 山東化工, 2015, 44(11):61 doi: 10.3969/j.issn.1008-021X.2015.11.024

    Chen W L. Application of molten salt in the preparation of inorganic powder. Shandong Chem Ind, 2015, 44(11): 61 doi: 10.3969/j.issn.1008-021X.2015.11.024
    [14]
    Liu X F, Fechler N, Antonietti M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem Soc Rev, 2013, 42(21): 8237
    [15]
    Yoon K H, Cho Y S, Kang D H. Molten salt synthesis of lead-based relaxors. J Mater Sci, 1998, 33(12): 2977
    [16]
    Li C C, Chiu C C, Desu S B. Formation of lead niobates in molten salt systems. J Am Ceram Soc, 1991, 74(1): 42
    [17]
    闞小清, 丁軍, 鄧承繼, 等. 熔鹽法在無機材料合成與制備中的研究進展//第十五屆全國耐火材料青年學術報告會論文集. 揚州, 2016: 12

    Kan X Q, Ding J, Deng C J, et al. Advances in the study of molten salt in the synthesis and preparation of inorganic materials//Proceedings of the 15th National Youth Symposium on Refractory Materials. Yangzhou, 2016: 12
    [18]
    李雪冬, 朱伯銓, 汪厚植. 熔鹽法在無機材料粉體制備中的應用. 材料導報, 2006, 20(3):44 doi: 10.3321/j.issn:1005-023X.2006.03.012

    Li X D, Zhu B Q, Wang H Z. Application of molten salt method in preparation of inorganic material powders. Mater Rev, 2006, 20(3): 44 doi: 10.3321/j.issn:1005-023X.2006.03.012
    [19]
    江麗軍. 無機材料粉體制備中使用熔鹽法的研究. 科技展望, 2016, 26(28):143 doi: 10.3969/j.issn.1672-8289.2016.28.126

    Jiang L J. Study on the use of molten salt in powder preparation of inorganic materials. Technol Outlook, 2016, 26(28): 143 doi: 10.3969/j.issn.1672-8289.2016.28.126
    [20]
    Song Y F, Zhu H X, Deng C J, et al. Synthesis of stoichiometric titanium carbide by a combination of carbothermal reduction and molten salt method and its characterization. Rare Met Mater Eng, 2018, 47(4): 1082
    [21]
    Cao C Z, Liu W Q, Javadi A, et al. Scalable manufacturing of 10 nm TiC nanoparticles through molten salt reaction. Procedia Manuf, 2017, 10: 634
    [22]
    Yang L X, Wang Y, Liu R J, et al. In-situ synthesis of nanocrystalline TiC powders, nanorods, and nanosheets in molten salt by disproportionation reaction of Ti (Ⅱ) species. J Mater Sci Technol, 2020, 37: 173
    [23]
    梁寶巖, 張旺璽, 馮燕翔. 以碳納米管為碳源合成碳化鈦. 無機鹽工業, 2017, 49(3):34

    Liang B Y, Zhang W X, Feng Y X. Synthesis of TiC by using carbon nanotube as C source. Inorg Chem Ind, 2017, 49(3): 34
    [24]
    呂品, 肖志超, 張永輝, 等. 炭/炭復合材料表面熔鹽反應制備TiC涂層及其性能研究. 炭素技術, 2014, 33(3):26

    Lü P, Xiao Z C, Zhang Y H, et al. The preparation and performance of TiC coatings on the surface of carbon/carbon composites by molten salt. Carbon Tech, 2014, 33(3): 26
    [25]
    Li X K, Dong Z J, Westwood A, et al. Preparation of a titanium carbide coating on carbon fibre using a molten salt method. Carbon, 2008, 46(2): 305
    [26]
    Yang R S, Cui L S, Zheng Y J. Synthesis of TiC/NiTi composite powders in molten salt and their sintering. J Mater Sci, 2008, 43(1): 98
    [27]
    Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 2000, 407(6802): 361
    [28]
    魯雄剛, 鄒星禮. 熔鹽電解制備難熔金屬及合金的回顧與展望. 自然雜志, 2013, 35(2):97

    Lu X G, Zou X L. Prospect and retrospect of molten salt electrolysis process for producing refractory metals and alloys. Chin J Nat, 2013, 35(2): 97
    [29]
    Chen G Z, Gordo E, Fray D J. Direct electrolytic preparation of chromium powder. Metall Mater Trans B, 2004, 35(2): 223
    [30]
    Hyslop D J S, Abdelkader A M, Cox A, et al. Electrochemical synthesis of a biomedically important Co–Cr alloy. Acta Mater, 2010, 58(8): 3124
    [31]
    Abdelkader A M, Fray D J. Electro-deoxidation of hafnium dioxide and niobia-doped hafnium dioxide in molten calcium chloride. Electrochim Acta, 2012, 64: 10
    [32]
    Xu Q, Deng L Q, Wu Y, et al. A study of cathode improvement for electro-deoxidation of Nb2O5 in a eutectic CaCl2–NaCl melt at 1073 K. J Alloys Compd, 2005, 396(1-2): 288
    [33]
    白鑫濤. 鈦酸鈉?C氯化鈣熔鹽中電化學還原制備TiC過程研究[學位論文]. 沈陽: 東北大學, 2015

    Bai X T. Preparation of TiC by the Electrochemical Method using Na2TiO3C in CaCl2 Molten Salt[Dissertation]. Shenyang: Northeastern University, 2015
    [34]
    郎曉川, 謝宏偉, 翟玉春, 等. 熔鹽電解法制備TiC粉末的研究. 稀有金屬與硬質合金, 2013, 41(5):1

    Lang X C, Xie H W, Zhai Y C, et al. Research on preparation of TiC powders by molten salt electrolysis. Rare Met Cem Carbides, 2013, 41(5): 1
    [35]
    崔富暉. 熔鹽電化學脫氧制備碳化鈦[學位論文]. 沈陽: 東北大學, 2014

    Cui F H. Preparation of TiC by Salt Electrochemistry Deoxy Method[Dissertation]. Shenyang: Northeastern University, 2014
    [36]
    扈玫瓏, 白晨光, 杜繼紅, 等. 熔鹽電解制備鈦及鈦合金研究進展. 鈦工業進展, 2009, 26(3):7 doi: 10.3969/j.issn.1009-9964.2009.03.002

    Hu M L, Bai C G, Du J H, et al. Development of preparation of titanium and titanium alloys by electrolysis in molten salt. Tit Ind Prog, 2009, 26(3): 7 doi: 10.3969/j.issn.1009-9964.2009.03.002
    [37]
    Zhang L L, Wang S B, Jiao S Q, et al. Electrochemical synthesis of titanium oxycarbide in a CaCl2 based molten salt. Electrochim Acta, 2012, 75: 357
    [38]
    陳孔豪. NaCl–CaCl2熔鹽電解含鈦物料制備TiC的研究[學位論文]. 昆明: 昆明理工大學, 2015

    Chen K H. NaCl–CaCl2 Study on Preparation TiC of Titanium-containing Materials by Electrolysis of Molten Salt[Dissertation]. Kunming: Kunming University of Science and Technology, 2015
    [39]
    謝江生, 馬文會, 秦博, 等. 熔鹽電解制備碳化鈦粉末的研究. 有色金屬(冶煉部分), 2013(12):52

    Xie J S, Ma W H, Qin B, et al. Study on preparation of TiC powder by molten salt electrolysis. Nonferrous Met (Extract Metall), 2013(12): 52
    [40]
    Yan X Y, Pownceby M I, Cooksey M A, et al. Preparation of TiC powders and coatings by electrodeoxidation of solid TiO2 in molten salts. Miner Process Extract Metall, 2009, 118(1): 23
    [41]
    Chen K H, Hua Y X, Xu C Y, et al. Preparation of TiC/SiC composites from Ti-enriched slag by an electrochemical process in molten salts. Ceram Int, 2015, 41(9): 11428
    [42]
    張臻, 華一新, 徐存英, 等. CaO–CaCl2–NaCl熔鹽電解高鈦渣/C制備TiC/SiC納米復合粉體. 稀有金屬, 2018, 42(4):408

    Zhang Z, Hua Y X, Xu C Y, et al. Preparation of TiC/SiC nano composite powders from high titanium slag and C mixture by electrolysis in CaO–CaCl2–NaCl molten salt. Chin J Rare Met, 2018, 42(4): 408
    [43]
    張琳琳, 焦樹強, 朱鴻民. 直接電化學脫氧法制備TiCxOy//第九屆冶金工程科學論壇. 北京, 2010: 250

    Zhang L L, Jiao S Q, Zhu H M. TiCxOy prepared by direct electrochemical deoxidation//Proceedings of the 9th Metallurgical Engineering Science Forum. Beijing, 2010: 250
    [44]
    彭瑞伍. 熔鹽電化學及其應用. 科學通報, 1965, 10(5):415

    Peng R W. Electrochemistry of molten salt and its application. Chinese Science Bulletin, 1965, 10(5): 415
    [45]
    Lee D W, Alexandrovskii S V, Kim B K. Novel synthesis of substoichiometric ultrafine titanium carbide. Mater Lett, 2004, 58(9): 1471
    [46]
    丁娟. 熔鹽介質中碳化物粉體的制備研究[學位論文]. 武漢: 武漢科技大學, 2011

    Ding J. Synthesis of Carbide Powder in Molten Salt[Dissertation]. Wuhan: Wuhan University of Science and Technology, 2011
    [47]
    劉仕福, 沈以赴, 王少剛, 等. 石墨表面鈦金屬化界面的組織及機理. 稀有金屬材料與工程, 2006, 35(7):1085 doi: 10.3321/j.issn:1002-185X.2006.07.017

    Liu S F, Shen Y F, Wang S G, et al. Microstructures and mechanism of Ti-metallizated graphite. Rare Met Mater Eng, 2006, 35(7): 1085 doi: 10.3321/j.issn:1002-185X.2006.07.017
    [48]
    Piquero T, Vincent H, Vincent C, et al. Influence of carbide coatings on the oxidation behavior of carbon fibers. Carbon, 1995, 33(4): 455
    [49]
    Dong Z J, Li X K, Yuan G M, et al. Tensile strength, oxidation resistance and wettability of carbon fibers coated with a TiC layer using a molten salt method. Mater Des, 2013, 50: 156
    [50]
    曹冉, 李紅霞. 非均勻成核法石墨表面改性的研究. 耐火材料, 2006, 40(3):161 doi: 10.3969/j.issn.1001-1935.2006.03.001

    Cao R, Li H X. Study on graphite surface modification by heterogeneous nucleation process. Refractories, 2006, 40(3): 161 doi: 10.3969/j.issn.1001-1935.2006.03.001
    [51]
    Saberi A, Golestani-Fard F, Willert-Porada M, et al. Improving the quality of nanocrystalline MgAl2O4 spinel coating on graphite by a prior oxidation treatment on the graphite surface. J Eur Ceram Soc, 2008, 28(10): 2011
    [52]
    Wang K J, Guo Q G, Zhang G B, et al. Influence of TiC/C transition layers on coated graphite as thermal stress relieving layers. Surf Coat Technol, 2007, 201(16-17): 7472
    [53]
    Monteleone C, Poges S, Petroski K, et al. Atmospheric pressure chemical vapor infiltration of a titanium carbide interphase coating on carbon fiber. Ceram Int, 2020, 46(10): 15084
    [54]
    Liu X, Zhang S. Low-temperature preparation of titanium carbide coatings on graphite flakes from molten salts. J Am Ceram Soc, 2008, 91(2): 667
    [55]
    Li X K, Dong Z, Westwood A, et al. Low-temperature preparation of single crystal titanium carbide nanofibers in molten salts. Cryst Growth Des, 2011, 11(7): 3122
    [56]
    丁軍, 鄧承繼, 張小軍, 等. 熔鹽介質中石墨表面碳化鈦包覆的研究. 功能材料, 2014, 45(3):03066 doi: 10.3969/j.issn.1001-9731.2014.03.015

    Ding J, Deng C J, Zhang X J, et al. Synthesis of titanium carbide coating on surface of graphite by molten salt media. J Funct Mater, 2014, 45(3): 03066 doi: 10.3969/j.issn.1001-9731.2014.03.015
    [57]
    董志軍, 崔正威, 袁觀明, 等. 熔鹽反應法低溫制備TiC涂層炭纖維的工藝研究. 中國陶瓷, 2014, 50(10):8

    Dong Z J, Cui Z W, Yuan G M, et al. Study on the technique of the preparation of TiC coated carbon fibers at low temperatures by molten salt reaction method. China Ceram, 2014, 50(10): 8
    [58]
    梁寶巖, 夏濤, 張旺璽, 等. 微波輻照下碳纖維表面熔鹽鍍覆TiC研究. 中原工學院學報, 2017, 28(3):53 doi: 10.3969/j.issn.1671-6906.2017.03.012

    Liang B Y, Xia T, Zhang W X, et al. Coating of TiC on the surface of carbon fiber by salt molten treatment with microwave irradiation. J Zhongyuan Univ Technol, 2017, 28(3): 53 doi: 10.3969/j.issn.1671-6906.2017.03.012
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)

    Article views (1636) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频