<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
ZENG Chen-dong, CHEN Li. Exponential impedance control based on force/pose tracking for orbit insertion and extraction operation by space manipulator[J]. Chinese Journal of Engineering, 2022, 44(2): 254-264. doi: 10.13374/j.issn2095-9389.2020.07.31.002
Citation: ZENG Chen-dong, CHEN Li. Exponential impedance control based on force/pose tracking for orbit insertion and extraction operation by space manipulator[J]. Chinese Journal of Engineering, 2022, 44(2): 254-264. doi: 10.13374/j.issn2095-9389.2020.07.31.002

Exponential impedance control based on force/pose tracking for orbit insertion and extraction operation by space manipulator

doi: 10.13374/j.issn2095-9389.2020.07.31.002
More Information
  • Corresponding author: E-mail: chnle@fzu.edu.cn
  • Received Date: 2020-07-31
    Available Online: 2020-09-25
  • Publish Date: 2022-02-15
  • With the developments in space technology and exploration, the space manipulator has become a better choice than astronauts for performing long-time and high-precision operation tasks, such as orbit assembly, orbit maintenance, and orbit refueling. In carrying out the above orbit service tasks, the space manipulator must perform insertion and extraction operations. By considering the impedance control, a dynamic relationship can be established between the pose and output force during insertion and extraction tasks. In this paper, the impedance control problems associated with the insertion and extraction operation of the space manipulator were discussed. By combining the conservation of the momentum of the system, relationship between the driving forces of insertion and extraction at the end of the replacement parts, friction resistance in the holes, and second Lagrange equation, we derived dynamic equations for the space manipulator during the orbit insertion and extraction operation when the position and attitude of the carrier were not controlled. In addition, based on the design requirements of the related operation and control systems, we established the Jacobian relation of the relative motion between the end of the replacement parts and the basic coordinate system by performing a geometric relation analysis of the system position. Then, we established a second-order linear impedance control model based on the dynamic relationship between the pose and driving force of the end of the replacement parts and the impedance control principle. Based on the above work, to address the uncertainty of the kinematics and dynamics of the orbit insertion and extraction operation, performed by the space manipulator, we designed an exponential impedance control strategy on the basis of force/pose tracking, and confirmed the stability of the control system based on the Lyapunov theory. The proposed control strategy has a simple structure, fast convergence speed, and good stability. As such, it is suitable for situations with limited computing and storage capacities, such as the space station computer. The numerical simulation results of this system verify the effectiveness of the proposed control strategy.

     

  • loading
  • [1]
    Ichter B, Pavone M. Robot motion planning in learned latent spaces. IEEE Rob Autom Lett, 2019, 4(3): 2407 doi: 10.1109/LRA.2019.2901898
    [2]
    Flores-Abad A, Zhang L, Wei Z, et al. Optimal capture of a tumbling object in orbit using a space manipulator. J Intell Rob Syst, 2017, 86(2): 199 doi: 10.1007/s10846-016-0417-1
    [3]
    Keppler M, Lakatos D, Ott C, et al. Elastic structure preserving (EPS) control for compliantly actuated robots. IEEE Trans Rob, 2018, 34(2): 317 doi: 10.1109/TRO.2017.2776314
    [4]
    Al-Isawi M M A, Sasiadek J Z. Guidance and control of a robot capturing an uncooperative space target. J Intell Rob Syst, 2019, 93(3): 713
    [5]
    Peng J Q, Xu W F, Pan E Z, et al. Dual-arm coordinated capturing of an unknown tumbling target based on efficient parameters estimation. Acta Astron, 2019, 162: 589 doi: 10.1016/j.actaastro.2019.03.008
    [6]
    Giordano A M, Ott C, Albu-Sch?ffer A. Coordinated control of spacecraft’s attitude and end-effector for space robots. IEEE Rob Autom Lett, 2019, 4(2): 2108 doi: 10.1109/LRA.2019.2899433
    [7]
    Gangapersaud R A, Liu G J, de Ruiter A H J. Detumbling of a non-cooperative target with unknown inertial parameters using a space robot. Adv Space Res, 2019, 63(12): 3900 doi: 10.1016/j.asr.2019.03.002
    [8]
    Zhang N, Gai W D, Zhang G L, et al. An active disturbance rejection control guidance law based collision avoidance for unmanned aerial vehicles. Aerospace Sci Technol, 2018, 77: 658 doi: 10.1016/j.ast.2018.03.048
    [9]
    Nokleby S B. Singularity analysis of the Canadarm2. Mech Mach Theory, 2007, 42(4): 442 doi: 10.1016/j.mechmachtheory.2006.04.004
    [10]
    Freund E, Rossmann J. Multimedia and virtual reality techniques for the control of ERA, the first free flying robot in space // Proceedings of the 2001 IEEE International Conference on Robotics and Automation. Seoul, 2001: 1921
    [11]
    Fukazu Y, Hara N, Kanamiya Y, et al. Reactionless resolved acceleration control with vibration suppression capability for JEMRMS/SFA // IEEE International Conference on Robotics and Biomimetics. Bangkok, 2009: 1359
    [12]
    Debus T J, Dougherty S P. Overview and performance of the front-end robotics enabling near-term demonstration (FREND) robotic arm // AIAA Infotech @ Aerospace Conference. Seattle, 2009: 1870
    [13]
    Barnhart D, Sullivan B, Hunter R, et al. Phoenix project status 2013 // AIAA Space 2013 Conference and Exposition. San Diego, 2013: 1
    [14]
    Reintsema D, Thaeter J, Rathke A, et al. DEOS the German robotics approach to secure and de-orbit malfunctioned satellites from low earth orbits // 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Sapporo, 2010: 244
    [15]
    程靖, 陳力. 空間機器人雙臂捕獲衛星力學分析及鎮定控制. 力學學報, 2016, 48(4):832 doi: 10.6052/0459-1879-16-156

    Cheng J, Chen L. Mechanical analysis and calm control of dual-arm space robot for capturing a satellite. Chin J Theor Appl Mech, 2016, 48(4): 832 doi: 10.6052/0459-1879-16-156
    [16]
    Yoshida K, Nakanishi H, Ueno H, et al. Dynamics control and impedance matching for robotic capture of a non-cooperative satellite. Adv Rob, 2004, 18(2): 175 doi: 10.1163/156855304322758015
    [17]
    Huang P F, Wang M, Meng Z J, et al. Attitude takeover control for post-capture of target spacecraft using space robot. Aerospace Sci Technol, 2016, 51: 171 doi: 10.1016/j.ast.2016.02.006
    [18]
    謝立敏, 陳力. 輸入力矩受限情況下漂浮基空間機械臂的魯棒自適應混合控制. 工程力學, 2013, 30(3):371

    Xie L M, Chen L. Robust and adaptive composite control of space manipulator system with bounded torque inputs. Eng Mech, 2013, 30(3): 371
    [19]
    Gasbarri P, Pisculli A. Dynamic/control interactions between flexible orbiting space-robot during grasping, docking and post-docking manoeuvres. Acta Astron, 2015, 110: 225 doi: 10.1016/j.actaastro.2015.01.024
    [20]
    Hogan N. Stable execution of contact tasks using impedance control // IEEE International Conference on Robotics and Automation. Raleigh, 1987: 1047
    [21]
    Nanos K, Papadopoulos E G. On the dynamics and control of flexible joint space manipulators. Control Eng Pract, 2015, 45: 230 doi: 10.1016/j.conengprac.2015.06.009
    [22]
    付曉東, 陳力. 全柔性空間機器人運動振動一體化輸入受限重復學習控制. 力學學報, 2020, 52(1):171 doi: 10.6052/0459-1879-19-289

    Fu X D, Chen L. An input limited repetitive learning control of flexible-base two-flexible-link and two-flexible-joint space robot with integration of motion and vibration. Chin J Theor Appl Mech, 2020, 52(1): 171 doi: 10.6052/0459-1879-19-289
    [23]
    Wang M M, Luo J J, Yuan J P, et al. Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target. Nonlinear Dyn, 2018, 92(3): 1023 doi: 10.1007/s11071-018-4106-4
    [24]
    Luo J J, Wei C S, Dai H H, et al. Robust inertia-free attitude takeover control of post capture combined spacecraft with guaranteed prescribed performance. ISA Trans, 2018, 74: 28 doi: 10.1016/j.isatra.2018.01.016
    [25]
    Xiao B, Yin S. Velocity-free fault-tolerant and uncertainty attenuation control for a class of nonlinear systems. IEEE Trans Ind Electron, 2016, 63(7): 4400 doi: 10.1109/TIE.2016.2532284
    [26]
    Islam S, Liu X P. Robust sliding mode control for robot manipulators. IEEE Trans Ind Electron, 2011, 58(6): 2444 doi: 10.1109/TIE.2010.2062472
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(14)

    Article views (1150) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频