Citation: | WANG Ya-guang, LIU Xiao-ming. Review on the application and development of red mud-based photocatalytic materials for degradation of organic pollutants in water[J]. Chinese Journal of Engineering, 2021, 43(1): 22-32. doi: 10.13374/j.issn2095-9389.2020.07.30.003 |
[1] |
Sousa J C G, Ribeiro A R, Barbosa M O, et al. a review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater, 2018, 344: 146 doi: 10.1016/j.jhazmat.2017.09.058
|
[2] |
Li S N, Ma R X, Wang C Y. Solid-phase synthesis of Cu2MoS4 nanoparticles for degradation of methyl blue under a halogen-tungsten lamp. Int J Miner Metall Mater, 2018, 25(3): 310 doi: 10.1007/s12613-018-1574-y
|
[3] |
鄭鋒, 郭敏, 張梅. 水熱法制備WO3納米棒陣列及其光催化性能. 北京科技大學學報, 2014, 36(6):810
Zheng F, Guo M, Zhang M. Hydrothermal preparation of WO3 nanorod arrays and their photocatalytic properties. J Univ Sci Technol Beijing, 2014, 36(6): 810
|
[4] |
Pathania D, Katwal R, Kaur H. Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles. Int J Miner Metall Mater, 2016, 23(3): 358 doi: 10.1007/s12613-016-1245-9
|
[5] |
Zhang G H, Zhang X Q, Meng Y, et al. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: a review. Chem Eng J, 2020, 392: 123684 doi: 10.1016/j.cej.2019.123684
|
[6] |
Matafonova G, Batoev V. Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: a review. Water Res, 2018, 132: 177 doi: 10.1016/j.watres.2017.12.079
|
[7] |
Sudhaik A, Raizada P, Shandilya P, et al. Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants. J Ind Eng Chem, 2018, 67: 28 doi: 10.1016/j.jiec.2018.07.007
|
[8] |
Sharma K, Dutta V, Sharma S, et al. Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: a review. J Ind Eng Chem, 2019, 78: 1 doi: 10.1016/j.jiec.2019.06.022
|
[9] |
Kumari P, Bahadur N, Dumée L F. Photo-catalytic membrane reactors for the remediation of persistent organic pollutants–a review. Sep Purif Technol, 2020, 230: 115878 doi: 10.1016/j.seppur.2019.115878
|
[10] |
Lum P T, Foo K Y, Zakaria N A, et al. Ash based nanocomposites for photocatalytic degradation of textile dye pollutants: a review. Mater Chem Phys, 2020, 241: 122405 doi: 10.1016/j.matchemphys.2019.122405
|
[11] |
李恒, 劉曉明, 趙喜彬, 等. 生物質松木鋸末中低溫還原高鐵拜耳法赤泥. 工程科學學報, 2017, 39(9):1331
Li H, Liu X M, Zhao X B, et al. Medium-low temperature reduction of high-iron Bayer process red mud using biomass pine sawdust. Chin J Eng, 2017, 39(9): 1331
|
[12] |
Mukiza E, Zhang L L, Liu X M, et al. Utilization of red mud in road base and subgrade materials: a review. Resour Conserv Recycl, 2019, 141: 187 doi: 10.1016/j.resconrec.2018.10.031
|
[13] |
Zhang S, Yi J J, Chen J R, et al. Spatially confined Fe2O3 in hierarchical SiO2@TiO2 hollow sphere exhibiting superior photocatalytic efficiency for degrading antibiotics. Chem Eng J, 2020, 380: 122583 doi: 10.1016/j.cej.2019.122583
|
[14] |
孫澤輝, 郭敏, 張梅. 由鐵鱗制備納米氧化鐵可見光光催化劑. 工程科學學報, 2015, 37(1):70
Sun Z H, Guo M, Zhang M. Hydrothermal synthesis of nanostructured iron oxide visible-light photocatalysts from mill scales. Chin J Eng, 2015, 37(1): 70
|
[15] |
Mirmasoomi S R, Ghazi M M, Galedari M. Photocatalytic degradation of diazinon under visible light using TiO2/Fe2O3 nanocomposite synthesized by ultrasonic-assisted impregnation method. Sep Purif Technol, 2017, 175: 418 doi: 10.1016/j.seppur.2016.11.021
|
[16] |
Nuengmatcha P, Porrawatkul P, Chanthai S, et al. Enhanced photocatalytic degradation of methylene blue using Fe2O3/graphene/CuO nanocomposites under visible light. J Environ Chem Eng, 2019, 7(6): 103438 doi: 10.1016/j.jece.2019.103438
|
[17] |
Ng T W, Zhang L S, Liu J S, et al. Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3–AgBr. Water Res, 2016, 90: 111 doi: 10.1016/j.watres.2015.12.022
|
[18] |
El-Maghrabi H H, Al-Kahlawy A A, Nada A A, et al. Photocorrosion resistant Ag2CO3@Fe2O3/TiO2–NT nanocomposite for efficient visible light photocatalytic degradation activities. J Hazard Mater, 2018, 360: 250 doi: 10.1016/j.jhazmat.2018.08.002
|
[19] |
Mohamed H H. Rationally designed Fe2O3/GO/WO3 Z-Scheme photocatalyst for enhanced solar light photocatalytic water remediation. J Photochem Photobiol A, 2019, 378: 74 doi: 10.1016/j.jphotochem.2019.04.023
|
[20] |
Cao J L, Yan Z L, Deng Q F, et al. Homogeneous precipitation method preparation of modified red mud supported Ni mesoporous catalysts for ammonia decomposition. Catal Sci Technol, 2014, 4(2): 361 doi: 10.1039/C3CY00519D
|
[21] |
Das B, Mohanty K. a review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud. Renew Energ, 2019, 143: 1791 doi: 10.1016/j.renene.2019.05.114
|
[22] |
Feng Y, Wu D L, Liao C Z, et al. Red mud powders as low-cost and efficient catalysts for persulfate activation: pathways and reusability of mineralizing sulfadiazine. Sep Purif Technol, 2016, 167: 136 doi: 10.1016/j.seppur.2016.04.051
|
[23] |
Ge J L, Zhang Y F, Heo Y J, et al. Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: a review. Catalysts, 2019, 9(2): 122 doi: 10.3390/catal9020122
|
[24] |
Shi W L, Ren H J, Li M Y, et al. Tetracycline removal from aqueous solution by visible-light-driven photocatalytic degradation with low cost red mud wastes. Chem Eng J, 2020, 382: 122876 doi: 10.1016/j.cej.2019.122876
|
[25] |
王小華, 劉紅, 周志輝, 等. 赤泥制備光催化劑降解染料廢水的研究. 工業安全與環保, 2012, 38(11):30 doi: 10.3969/j.issn.1001-425X.2012.11.011
Wang X H, Liu H, Zhou Z H, et al. Study on dispose of dye wastewater by photocatalysts prepared from red mud. Ind Saf Environ Prot, 2012, 38(11): 30 doi: 10.3969/j.issn.1001-425X.2012.11.011
|
[26] |
Ma M J, Wang G Y, Yang Z P, et al. Preparation, characterization, and photocatalytic properties of modified red mud. Adv Mater Sci Eng, 2015, 2015: 907539
|
[27] |
Busto R V, Gon?alves M, Coelho L H G. Assessment of the use of red mud as a catalyst for photodegradation of bisphenol A in wastewater treatment. Water Sci Technol, 2016, 74(6): 1283 doi: 10.2166/wst.2016.309
|
[28] |
Ren H J, Tang Y B, Shi W L, et al. Red mud modified with graphene oxide for enhanced visible-light-driven photocatalytic performance towards the degradation of antibiotics. New J Chem, 2019, 43(48): 19172 doi: 10.1039/C9NJ04697F
|
[29] |
Dias F F, Oliveira A A S, Arcanjo A P, et al. Residue-based iron catalyst for the degradation of textile dye via heterogeneous photo-Fenton. Appl Catal B, 2016, 186: 136 doi: 10.1016/j.apcatb.2015.12.049
|
[30] |
Rath D, Nanda B, Parida K. Sustainable nano composite of mesoporous silica supported red mud for solar powered degradation of aquatic pollutants. J Environ Chem Eng, 2017, 5(6): 6137 doi: 10.1016/j.jece.2017.11.037
|
[31] |
Soldan M, Kobeticova H, Gerulova K. Photocatalytic degradation of methylene blue using glass fibers catalytic layer covered with red mud. J Mater Appl, 2017, 6(1): 23
|
[32] |
Hajjaji W, Pullar R C, Labrincha J A, et al. Aqueous Acid Orange 7 dye removal by clay and red mud mixes. Appl Clay Sci, 2016, 126: 197 doi: 10.1016/j.clay.2016.03.016
|
[33] |
Sahu M K, Patel R K. Novel visible-light-driven cobalt loaded neutralized red mud (Co/NRM) composite with photocatalytic activity toward methylene blue dye degradation. J Ind Eng Chem, 2016, 40: 72 doi: 10.1016/j.jiec.2016.06.008
|
[34] |
邱愛玲, 朱立忠, 劉俊. 一種赤泥活化改性的方法及應用: 中國專利, CN201710265875.8. 2018-11-02.
Qiu A L, Zhu L Z, Liu J. A Method of Red Mud Activation Modification and Its Application: China Patent, CN201710265875.8. 2018-11-02.
|
[35] |
Shi W L, Ren H J, Huang X L, et al. Low cost red mud modified graphitic carbon nitride for the removal of organic pollutants in wastewater by the synergistic effect of adsorption and photocatalysis. Sep Purif Technol, 2020, 237: 116477 doi: 10.1016/j.seppur.2019.116477
|
[36] |
Pereira L D O, de Moura S G, Coelho G C M, et al. Magnetic photocatalysts from industrial residues and TiO2 for the degradation of organic contaminants. J Environ Chem Eng, 2019, 7(1): 102826 doi: 10.1016/j.jece.2018.102826
|
[37] |
Xu L J, Wang Y D, Liu J, et al. High-efficient visible-light photocatalyst based on graphene incorporated Ag3PO4 nanocomposite applicable for the degradation of a wide variety of dyes. J Photochem Photobiol A, 2017, 340: 70 doi: 10.1016/j.jphotochem.2017.02.022
|
[38] |
Deng Z, Zhang X H, Chan K C, et al. Fe-based metallic glass catalyst with nanoporous surface for azo dye degradation. Chemosphere, 2017, 174: 76 doi: 10.1016/j.chemosphere.2017.01.094
|
[39] |
Rajeswari A, Vismaiya S, Pius A. Preparation, characterization of nano ZnO-blended cellulose acetate-polyurethane membrane for photocatalytic degradation of dyes from water. Chem Eng J, 2017, 313: 928 doi: 10.1016/j.cej.2016.10.124
|
[40] |
Li W C. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut, 2014, 187: 193 doi: 10.1016/j.envpol.2014.01.015
|
[41] |
Liu J L, Wong M H. Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int, 2013, 59: 208 doi: 10.1016/j.envint.2013.06.012
|