<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
SHI Yong-sheng, SHI Meng-zhuo, DING En-song, HONG Yuan-tao, OU Yang. Combined prediction method of lithium-ion battery life based on CEEMDAN–LSTM[J]. Chinese Journal of Engineering, 2021, 43(7): 985-994. doi: 10.13374/j.issn2095-9389.2020.06.30.007
Citation: SHI Yong-sheng, SHI Meng-zhuo, DING En-song, HONG Yuan-tao, OU Yang. Combined prediction method of lithium-ion battery life based on CEEMDAN–LSTM[J]. Chinese Journal of Engineering, 2021, 43(7): 985-994. doi: 10.13374/j.issn2095-9389.2020.06.30.007

Combined prediction method of lithium-ion battery life based on CEEMDAN–LSTM

doi: 10.13374/j.issn2095-9389.2020.06.30.007
More Information
  • Corresponding author: E-mail: 84770540@qq.com
  • Received Date: 2020-06-30
    Available Online: 2020-09-24
  • Publish Date: 2021-07-01
  • As a new generation of new energy battery, lithium-ion battery is widely used in various fields, including electronic products, electric vehicles, and power supply, due to its advantages of high energy density, light weight, long cycle life, small self-discharge, no memory effect, and no pollution. With the wide application of lithium-ion battery, numerous research on its performance has been done, including its health assessment as one of the hot spots. Repeated charging and discharging of a lithium-ion battery that was run under full charge state results to internal irreversible chemical changes leading to a fall in the maximum available capacity. Specifically, a decline to 70%–80% of the rated capacity results in lithium-ion battery failure. Battery failure may lead to electrical equipment damage, resulting in safety accidents. Therefore, it is of great significance to predict the remaining usable life of lithium-ion battery for improving system reliability. In this paper, a combination prediction model for lithium-ion batteries with multimode decomposition was presented based on the long and short-term memory (LSTM) prediction model to learn about small changes in its degradation process. A complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm was used to divide the capacity into main degradation trend and some local degradation trend. Long Short-Term Memory Neural Network (LSTMNN) algorithm was then introduced to perform the capacity prediction of decomposed degradation data. Finally, some prediction results were integrated effectively. The maximum mean absolute percentage error (MAPE) of the proposed CEEMDAN–LSTM lithium-ion battery combination prediction model does not exceed 1.5%. The average relative error is less than 3%, which is better than the other prediction model.

     

  • loading
  • [1]
    李練兵, 季亮, 祝亞尊, 等. 等效循環電池組剩余使用壽命預測. 工程科學學報, 2020, 42(6):796

    Li L B, Ji L, Zhu Y Z, et al. Investigation of RUL prediction of lithium-ion battery equivalent cycle battery pack. Chin J Eng, 2020, 42(6): 796
    [2]
    Liu D T, Zhou J B, Liao H T, et al. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics. IEEE Trans Syst Man Cybern:Syst, 2015, 45(6): 915 doi: 10.1109/TSMC.2015.2389757
    [3]
    潘海鴻, 呂治強, 付兵, 等. 采用極限學習機實現鋰離子電池健康狀態在線估算. 汽車工程, 2017, 39(12):1375

    Pan H P, Lv Z Q, Fu B, et al. Online estimation of lithium-ion battery’s state of health using extreme learning machine. Automot Eng, 2017, 39(12): 1375
    [4]
    Xiong R. Battery Management Algorithm for Electric Vehicles. Beijing: China Machine Press, 2020
    [5]
    Zhu J, Tan T X, Wu L F, et al. RUL prediction of lithium-ion battery based on improved DGWO–ELM method in a random discharge rates environment. IEEE Access, 2019, 7: 125176 doi: 10.1109/ACCESS.2019.2936822
    [6]
    陳琳, 陳靜, 王惠民, 等. 基于小波包能量熵的電池剩余壽命預測. 電工技術學報, 2020, 35(8):1827

    Chen L, Chen J, Wang H M, et al. Prediction of battery remaining useful life based on wavelet packet energy entropy. Trans China Electrotech Soc, 2020, 35(8): 1827
    [7]
    Zhang Y Z, Xiong R, He H W, et al. Lithium-ion battery remaining useful life prediction with Box-Cox transformation and Monte Carlo simulation. IEEE Trans Ind Electron, 2019, 66(2): 1585 doi: 10.1109/TIE.2018.2808918
    [8]
    Yun Z H, Qin W H. Remaining useful life estimation of lithium-ion batteries based on optimal time series health indicator. IEEE Access, 2020, 8: 55447 doi: 10.1109/ACCESS.2020.2981947
    [9]
    Park K, Choi Y, Choi W J, et al. LSTM-based battery remaining useful life prediction with multi-channel charging profiles. IEEE Access, 2020, 8: 20786 doi: 10.1109/ACCESS.2020.2968939
    [10]
    Zhang Y Z, Xiong R, He H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans Veh Technol, 2018, 67(7): 5695 doi: 10.1109/TVT.2018.2805189
    [11]
    韋海燕, 安晶晶, 陳靜, 等. 基于改進粒子濾波算法實現鋰離子電池RUL預測. 汽車工程, 2019, 41(12):1377

    Wei H Y, An J J, Chen J, et al. RUL prediction of lithium-ion battery based on improved particle filtering algorithm. Automot Eng, 2019, 41(12): 1377
    [12]
    Yu J B. State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble. Reliab Eng Syst Saf, 2018, 174: 82 doi: 10.1016/j.ress.2018.02.022
    [13]
    Zhou Y P, Huang M H. Lithium-ion batteries remaining useful life prediction on a mixture of empirical mode decomposition and ARIMA model. Microelectron Reliab, 2016, 65: 265 doi: 10.1016/j.microrel.2016.07.151
    [14]
    Li X Y, Zhang L, Wang Z P, et al. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks. J Energy Storage, 2019, 21: 510 doi: 10.1016/j.est.2018.12.011
    [15]
    Sayah M, Guebli D, Al Masry Z, et al. Robustness testing framework for RUL prediction Deep LSTM networks. ISA Trans, https://doi.org/10.1016/j.isatra.2020.07.003
    [16]
    Wang C S, Lu N Y, Wang S L, et al. Dynamic long short-term memory neural-network-based indirect remaining-useful-life prognosis for satellite lithium-ion battery. Appl Sci, 2018, 8(11): 2078 doi: 10.3390/app8112078
    [17]
    Bruneo D, De Vita F. On the use of LSTM networks for predictive maintenance in smart industries // 2019 IEEE International Conference on Smart Computing (SMARTCOMP). Washington, 2019: 241
    [18]
    Yan H R, Qin Y, Xiang S, et al. Long-term gear life prediction based on ordered neurons LSTM neural networks. Measurement, 2020, 165: 108205 doi: 10.1016/j.measurement.2020.108205
    [19]
    胡天中, 余建波. 基于多尺度分解和深度學習的鋰電池壽命預測. 浙江大學學報: 工學版, 2019, 53(10):1852

    Hu T Z, Yu J B. Life prediction of lithium-ion batteries based on multiscale decomposition and deep learning. J Zhejiang Univ Eng Sci, 2019, 53(10): 1852
    [20]
    張朝龍, 何怡剛, 袁莉芬. 基于EEMD和MKRVM的鋰電池剩余壽命預測方法. 電力系統及其自動化學報, 2018, 30(7):38 doi: 10.3969/j.issn.1003-8930.2018.07.006

    Zhang C L, He Y G, Yuan L F. Prediction approach for remaining useful life of lithium-ion battery based on EEMD and MKRVM. Proc CSU–EPSA, 2018, 30(7): 38 doi: 10.3969/j.issn.1003-8930.2018.07.006
    [21]
    齊昊明. 基于深度學習的鋰電池剩余壽命預測方法研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2019

    Qi H M. Research on Prediction Method of Remaining Life of Lithium Battery Based on Deep Learning [Dissertation]. Harbin: Harbin Institute of Technology, 2019
    [22]
    Li J L, Li X Y, He D. A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction. IEEE Access, 2019, 7: 75464 doi: 10.1109/ACCESS.2019.2919566
    [23]
    Zhou Y T, Huang Y N, Pang J B, et al. Remaining useful life prediction for supercapacitor based on long short-term memory neural network. J Power Sources, 2019, 440: 227149 doi: 10.1016/j.jpowsour.2019.227149
    [24]
    Yu Y, Hu C H, Si X S, et al. Averaged Bi–LSTM networks for RUL prognostics with non-life-cycle labeled dataset. Neurocomputing, 2020, 402: 134 doi: 10.1016/j.neucom.2020.03.041
    [25]
    Yang F F, Zhang S H, Li W H, et al. State of charge estimation of lithium-ion batteries using LSTM and UKF. Energy, 2020, 201: 117664 doi: 10.1016/j.energy.2020.117664
    [26]
    劉健, 陳自強, 黃德揚, 等. 基于等壓差充電時間的鋰離子電池壽命預測. 上海交通大學學報, 2019, 53(9):1058

    Liu J, Chen Z Q, Huang D Y, et al. Remaining useful life of lithium-ion batteries based on time interval of equal charging voltage difference. J Shanghai Jiaotong Univ, 2019, 53(9): 1058
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article views (3376) PDF downloads(189) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频