Citation: | SHI Yong-sheng, SHI Meng-zhuo, DING En-song, HONG Yuan-tao, OU Yang. Combined prediction method of lithium-ion battery life based on CEEMDAN–LSTM[J]. Chinese Journal of Engineering, 2021, 43(7): 985-994. doi: 10.13374/j.issn2095-9389.2020.06.30.007 |
[1] |
李練兵, 季亮, 祝亞尊, 等. 等效循環電池組剩余使用壽命預測. 工程科學學報, 2020, 42(6):796
Li L B, Ji L, Zhu Y Z, et al. Investigation of RUL prediction of lithium-ion battery equivalent cycle battery pack. Chin J Eng, 2020, 42(6): 796
|
[2] |
Liu D T, Zhou J B, Liao H T, et al. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics. IEEE Trans Syst Man Cybern:Syst, 2015, 45(6): 915 doi: 10.1109/TSMC.2015.2389757
|
[3] |
潘海鴻, 呂治強, 付兵, 等. 采用極限學習機實現鋰離子電池健康狀態在線估算. 汽車工程, 2017, 39(12):1375
Pan H P, Lv Z Q, Fu B, et al. Online estimation of lithium-ion battery’s state of health using extreme learning machine. Automot Eng, 2017, 39(12): 1375
|
[4] |
Xiong R. Battery Management Algorithm for Electric Vehicles. Beijing: China Machine Press, 2020
|
[5] |
Zhu J, Tan T X, Wu L F, et al. RUL prediction of lithium-ion battery based on improved DGWO–ELM method in a random discharge rates environment. IEEE Access, 2019, 7: 125176 doi: 10.1109/ACCESS.2019.2936822
|
[6] |
陳琳, 陳靜, 王惠民, 等. 基于小波包能量熵的電池剩余壽命預測. 電工技術學報, 2020, 35(8):1827
Chen L, Chen J, Wang H M, et al. Prediction of battery remaining useful life based on wavelet packet energy entropy. Trans China Electrotech Soc, 2020, 35(8): 1827
|
[7] |
Zhang Y Z, Xiong R, He H W, et al. Lithium-ion battery remaining useful life prediction with Box-Cox transformation and Monte Carlo simulation. IEEE Trans Ind Electron, 2019, 66(2): 1585 doi: 10.1109/TIE.2018.2808918
|
[8] |
Yun Z H, Qin W H. Remaining useful life estimation of lithium-ion batteries based on optimal time series health indicator. IEEE Access, 2020, 8: 55447 doi: 10.1109/ACCESS.2020.2981947
|
[9] |
Park K, Choi Y, Choi W J, et al. LSTM-based battery remaining useful life prediction with multi-channel charging profiles. IEEE Access, 2020, 8: 20786 doi: 10.1109/ACCESS.2020.2968939
|
[10] |
Zhang Y Z, Xiong R, He H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans Veh Technol, 2018, 67(7): 5695 doi: 10.1109/TVT.2018.2805189
|
[11] |
韋海燕, 安晶晶, 陳靜, 等. 基于改進粒子濾波算法實現鋰離子電池RUL預測. 汽車工程, 2019, 41(12):1377
Wei H Y, An J J, Chen J, et al. RUL prediction of lithium-ion battery based on improved particle filtering algorithm. Automot Eng, 2019, 41(12): 1377
|
[12] |
Yu J B. State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble. Reliab Eng Syst Saf, 2018, 174: 82 doi: 10.1016/j.ress.2018.02.022
|
[13] |
Zhou Y P, Huang M H. Lithium-ion batteries remaining useful life prediction on a mixture of empirical mode decomposition and ARIMA model. Microelectron Reliab, 2016, 65: 265 doi: 10.1016/j.microrel.2016.07.151
|
[14] |
Li X Y, Zhang L, Wang Z P, et al. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks. J Energy Storage, 2019, 21: 510 doi: 10.1016/j.est.2018.12.011
|
[15] |
Sayah M, Guebli D, Al Masry Z, et al. Robustness testing framework for RUL prediction Deep LSTM networks. ISA Trans, https://doi.org/10.1016/j.isatra.2020.07.003
|
[16] |
Wang C S, Lu N Y, Wang S L, et al. Dynamic long short-term memory neural-network-based indirect remaining-useful-life prognosis for satellite lithium-ion battery. Appl Sci, 2018, 8(11): 2078 doi: 10.3390/app8112078
|
[17] |
Bruneo D, De Vita F. On the use of LSTM networks for predictive maintenance in smart industries // 2019 IEEE International Conference on Smart Computing (SMARTCOMP). Washington, 2019: 241
|
[18] |
Yan H R, Qin Y, Xiang S, et al. Long-term gear life prediction based on ordered neurons LSTM neural networks. Measurement, 2020, 165: 108205 doi: 10.1016/j.measurement.2020.108205
|
[19] |
胡天中, 余建波. 基于多尺度分解和深度學習的鋰電池壽命預測. 浙江大學學報: 工學版, 2019, 53(10):1852
Hu T Z, Yu J B. Life prediction of lithium-ion batteries based on multiscale decomposition and deep learning. J Zhejiang Univ Eng Sci, 2019, 53(10): 1852
|
[20] |
張朝龍, 何怡剛, 袁莉芬. 基于EEMD和MKRVM的鋰電池剩余壽命預測方法. 電力系統及其自動化學報, 2018, 30(7):38 doi: 10.3969/j.issn.1003-8930.2018.07.006
Zhang C L, He Y G, Yuan L F. Prediction approach for remaining useful life of lithium-ion battery based on EEMD and MKRVM. Proc CSU–EPSA, 2018, 30(7): 38 doi: 10.3969/j.issn.1003-8930.2018.07.006
|
[21] |
齊昊明. 基于深度學習的鋰電池剩余壽命預測方法研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2019
Qi H M. Research on Prediction Method of Remaining Life of Lithium Battery Based on Deep Learning [Dissertation]. Harbin: Harbin Institute of Technology, 2019
|
[22] |
Li J L, Li X Y, He D. A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction. IEEE Access, 2019, 7: 75464 doi: 10.1109/ACCESS.2019.2919566
|
[23] |
Zhou Y T, Huang Y N, Pang J B, et al. Remaining useful life prediction for supercapacitor based on long short-term memory neural network. J Power Sources, 2019, 440: 227149 doi: 10.1016/j.jpowsour.2019.227149
|
[24] |
Yu Y, Hu C H, Si X S, et al. Averaged Bi–LSTM networks for RUL prognostics with non-life-cycle labeled dataset. Neurocomputing, 2020, 402: 134 doi: 10.1016/j.neucom.2020.03.041
|
[25] |
Yang F F, Zhang S H, Li W H, et al. State of charge estimation of lithium-ion batteries using LSTM and UKF. Energy, 2020, 201: 117664 doi: 10.1016/j.energy.2020.117664
|
[26] |
劉健, 陳自強, 黃德揚, 等. 基于等壓差充電時間的鋰離子電池壽命預測. 上海交通大學學報, 2019, 53(9):1058
Liu J, Chen Z Q, Huang D Y, et al. Remaining useful life of lithium-ion batteries based on time interval of equal charging voltage difference. J Shanghai Jiaotong Univ, 2019, 53(9): 1058
|