Citation: | CHEN Liang, FU Dong-mei. Processing and modeling dual-rate sampled data in seawater corrosion monitoring of low alloy steels[J]. Chinese Journal of Engineering, 2022, 44(1): 95-103. doi: 10.13374/j.issn2095-9389.2020.06.17.003 |
[1] |
Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data. Nature, 2015, 527(7579): 441 doi: 10.1038/527441a
|
[2] |
Li Z L, Fu D M, Li Y, et al. Application of an electrical resistance sensor-based automated corrosion monitor in the study of atmospheric corrosion. Materials, 2019, 12(7): 1065 doi: 10.3390/ma12071065
|
[3] |
Chen M D, Zhang H J, Chen L, et al. An electrochemical method based on OCP fluctuations for anti-corrosion alloy composition optimization. Anti-Corros Methods Mater, 2018, 65(3): 325 doi: 10.1108/ACMM-03-2018-1913
|
[4] |
Pei Z B, Cheng X Q, Yang X J, et al. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors. J Mater Sci Technol, 2021, 64: 214 doi: 10.1016/j.jmst.2020.01.023
|
[5] |
倪博溢, 蕭德云. 多采樣率系統的辨識問題綜述. 控制理論與應用, 2009, 26(1):62
Ni B Y, Xiao D Y. A survey on identification of multirate sampled systems. Control Theory Appl, 2009, 26(1): 62
|
[6] |
Kranc G. Input-output analysis of multirate feedback systems. IRE Trans Autom Control, 1957, 3(1): 21 doi: 10.1109/TAC.1957.1104783
|
[7] |
Friedland B. Sampled-data control systems containing periodically varying members. IFAC Proc Vol, 1960, 1(1): 371 doi: 10.1016/S1474-6670(17)70078-X
|
[8] |
Khargonekar P, Poolla K, Tannenbaum A. Robust control of linear time-invariant plants using periodic compensation. IEEE Trans Autom Control, 1985, 30(11): 1088 doi: 10.1109/TAC.1985.1103841
|
[9] |
倪博溢, 蕭德云. 非均勻采樣系統的一種遞推辨識方法. 自動化學報, 2009, 35(12):1520
Ni B Y, Xiao D Y. A recursive identification method for non-uniformly sampled systems. Acta Autom Sin, 2009, 35(12): 1520
|
[10] |
Li D G, Shah S L, Chen T W. Analysis of dual-rate inferential control systems. Automatica, 2002, 38(6): 1053 doi: 10.1016/S0005-1098(01)00295-3
|
[11] |
Ding F, Chen T W. Modeling and identification for multirate systems. Acta Autom Sin, 2005, 31(1): 105
|
[12] |
Zhi Y J, Fu D M, Zhang D W, et al. Prediction and knowledge mining of outdoor atmospheric corrosion rates of low alloy steels based on the random forests approach. Metals, 2019, 9(3): 383 doi: 10.3390/met9030383
|
[13] |
石雅楠, 付冬梅, 支元杰, 等. 基于 ANFIS 改進的大氣腐蝕環境缺失數據填補方法. 裝備環境工程, 2016, 13(6):78
Shi Y N, Fu D M, Zhi Y J, et al. Improved ANFIS-based imputation method for missing data on atmospheric corrosion environment. Equip Environ Eng, 2016, 13(6): 78
|
[14] |
Wei X, Fu D M, Chen M D, et al. Data mining to effect of key alloying elements on corrosion resistance of low alloy steels in Sanya seawater environment. J Mater Sci Technol, 2021, 64: 222 doi: 10.1016/j.jmst.2020.01.040
|
[15] |
劉學慶, 唐曉, 王佳. 金屬腐蝕速度與海水環境參數相關模型的人工神經網絡分析. 中國腐蝕與防護學報, 2005, 25(1):11 doi: 10.3969/j.issn.1005-4537.2005.01.003
Liu X Q, Tang X, Wang J. Correlation between seawater environmental factors and marine corrosion rate using artificial neural network analysis. J Chin Soc Corros Prot, 2005, 25(1): 11 doi: 10.3969/j.issn.1005-4537.2005.01.003
|
[16] |
Shirazi A Z, Mohammadi Z. A hybrid intelligent model combining ANN and imperialist competitive algorithm for prediction of corrosion rate in 3C steel under seawater environment. Neural Comput Appl, 2017, 28(11): 3455 doi: 10.1007/s00521-016-2251-6
|
[17] |
Wen Y F, Cai C Z, Liu X H, et al. Corrosion rate prediction of 3C steel under different seawater environment by using support vector regression. Corros Sci, 2009, 51(2): 349 doi: 10.1016/j.corsci.2008.10.038
|
[18] |
畢傲睿, 駱正山, 喬偉, 等. 基于主成分和粒子群優化支持向量機的管道內腐蝕預測. 表面技術, 2018, 47(9):133
Bi A R, Luo Z S, Qiao W, et al. Prediction of pipeline inner-corrosion based on principal component analysis and particle swarm optimization-support vector machine. Surf Technol, 2018, 47(9): 133
|
[19] |
李明曉, 張恒才, 仇培元, 等. 一種基于模糊長短期神經網絡的移動對象軌跡預測算法. 測繪學報, 2018, 47(12):1660 doi: 10.11947/j.AGCS.2018.20170268
Li M X, Zhang H C, Qiu P Y, et al. Predicting future locations with deep fuzzy-LSTM network. Acta Geodaet Cartograph Sin, 2018, 47(12): 1660 doi: 10.11947/j.AGCS.2018.20170268
|
[20] |
陳閩東, 張帆, 劉智勇, 等. 金屬材料在三亞海水中的腐蝕電位序及合金成分對耐蝕性的影響. 金屬學報, 2018, 54(9):1311 doi: 10.11900/0412.1961.2017.00521
Chen M D, Zhang F, Liu Z Y, et al. Galvanic series of metals and effect of alloy compositions on corrosion resistance in Sanya seawater. Acta Metall Sin, 2018, 54(9): 1311 doi: 10.11900/0412.1961.2017.00521
|
[21] |
Jiang X Y, Li S. BAS: beetle antennae search algorithm for optimization problems. Int J Rob Control, 2018, 1(1): 1 doi: 10.5430/ijrc.v1n1p1
|
[22] |
趙玉強, 錢謙, 周田江, 等. 天牛須搜索與遺傳的混合算法. 小型微型計算機系統, 2020, 41(7):1438 doi: 10.3969/j.issn.1000-1220.2020.07.016
Zhao Y Q, Qian Q, Zhou T J, et al. Hybrid optimization algorithm based on beetle antennae search and genetic evolution. J Chin Comput Syst, 2020, 41(7): 1438 doi: 10.3969/j.issn.1000-1220.2020.07.016
|
[23] |
Tipping M E. Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res, 2001, 1: 211
|
[24] |
吳小濤. 基于變分模態分解和相關向量機的太陽輻照度預測模型研究[學位論文]. 武漢: 華中科技大學, 2018
Wu X T. Prediction Model of Solar Irradiance Based on Variational Mode Decomposition and Relevance Vector Machine [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2018
|
[25] |
段青, 趙建國, 馬艷. 優化組合核函數相關向量機電力負荷預測模型. 電機與控制學報, 2010, 14(6):33 doi: 10.3969/j.issn.1007-449X.2010.06.006
Duan Q, Zhao J G, Ma Y. Relevance vector machine based on particle swarm optimization of compounding kernels in elextricity load forecasting. Electr Mach Control, 2010, 14(6): 33 doi: 10.3969/j.issn.1007-449X.2010.06.006
|
[26] |
Wu J, Cheng H C, Liu Y Q, et al. Learning soft sensors using time difference-based multi-kernel relevance vector machine with applications for quality-relevant monitoring in wastewater treatment. Environ Sci Pollut Res, 2020, 27(23): 28986 doi: 10.1007/s11356-020-09192-3
|