<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
ZHANG Ting, XU Hao, LI Zhong-jie, DONG An-ping, XING Hui, DU Da-fan, SUN Bao-de. Development and present situation of laminated metal composites[J]. Chinese Journal of Engineering, 2021, 43(1): 67-75. doi: 10.13374/j.issn2095-9389.2020.06.17.002
Citation: ZHANG Ting, XU Hao, LI Zhong-jie, DONG An-ping, XING Hui, DU Da-fan, SUN Bao-de. Development and present situation of laminated metal composites[J]. Chinese Journal of Engineering, 2021, 43(1): 67-75. doi: 10.13374/j.issn2095-9389.2020.06.17.002

Development and present situation of laminated metal composites

doi: 10.13374/j.issn2095-9389.2020.06.17.002
More Information
  • Corresponding author: E-mail: apdong@sjtu.edu.cn
  • Received Date: 2020-06-17
  • Publish Date: 2021-01-25
  • Laminated metal composites are composed of two or more metals or alloys, which integrate various excellent properties of the component materials and exhibit good comprehensive properties. The history of laminated metal composites can be traced back to more than 800 BC, and their systematic research began in the 1970s. Over the past 30 years, various methods have been invented to fabricate laminated metal composites, including explosive bonding, rolling bonding, hot-pressing bonding, and deposition bonding. Explosive bounding method has irreplaceable advantages in the preparation of medium thick plates with its products being widely used in military industry, ship, electric power, chemical industry, and other fields. On the other hand, rolling bonding is most widely used because of its ability of large quantity production. Cold roll bonding (CRB) and accumulative roll bonding (ARB) are two representative laminate preparation technologies that are utilized in the fabrication of a large number of material systems. Up to now, laminates prepared by rolling bonding are widely used in automobile, ship, aerospace, and other fields. The preparation of Ti/Al, Ti/TiAl, and Ti6Al4V/TiAl layered composites via vacuum hot-pressing bonding has attracted much attention in recent years because of its ability to avoid gas pollution such as oxygen production. Moreover, laminated metal composites produced by deposition bonding have great potential as corrosion resistant coatings, wear-resistant coatings, and high-strength conductors and implants. Although laminated metal composites have been well developed, there are still various problems to be solved. For some soft/hard material systems, the hard layer introduces plastic instability during the rolling process that destroys the continuity between layers. As a consequence, serious weakening of the comprehensive performance of the laminates is observed. Furthermore, only few studies on the design and new processes of laminated metal materials have been conducted. This paper reviewed the development of laminated metal composites, introduced the preparation methods and advantages and disadvantages of layered metal composites, and analyzed the research status of laminated metal composites at home and abroad.

     

  • loading
  • [1]
    劉曉濤, 張廷安, 崔建忠. 層狀金屬復合材料生產工藝及其新進展. 材料導報, 2002, 16(7):41 doi: 10.3321/j.issn:1005-023X.2002.07.013

    Liu X T, Zhang T A, Cui J Z. Technology of clad metal production and its latest progress. Mater Rev, 2002, 16(7): 41 doi: 10.3321/j.issn:1005-023X.2002.07.013
    [2]
    田廣民, 李選明, 趙永慶, 等. 層狀金屬復合材料加工技術研究現狀. 中國材料進展, 2013(11):696

    Tian G M, Li X M, Zhao Y Q, et al. Research status of processing technology of laminated metal composite. Mater China, 2013(11): 696
    [3]
    Wadsworth J, Lesuer D R. Ancient and modern laminated composites—from the Great Pyramid of Gizeh to Y2K. Mater Charact, 2000, 45(4-5): 289 doi: 10.1016/S1044-5803(00)00077-2
    [4]
    Wright P K, Snow D A, Tay C K. Interfacial conditions and bond strength in cold pressure welding by rolling. Met Technol, 1978, 5(1): 24 doi: 10.1179/mt.1978.5.1.24
    [5]
    Sherby O D, Wadsworth J. Ultrahigh carbon steels, Damascus steels, and superplasticity//The 9th International Metallurgical and Materials Congress. Istanbul, 1997
    [6]
    Hertzberg R W. Deformation and Fracture Mechanics of Engineering Materials. 2nd Ed. New York: Wiley, 1983
    [7]
    Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater, 1999, 47(2): 579 doi: 10.1016/S1359-6454(98)00365-6
    [8]
    王珺, 雷宇, 劉新華, 等. 水平連鑄復合成形銅鋁層狀復合材料的組織與性能. 工程科學學報, 2020, 42(2):216

    Wang J, Lei Y, Liu X H, et al. Microstructure and properties of Cu–Al–laminated composites fabricated via formation of a horizontal continuous casting composite. Chin J Eng, 2020, 42(2): 216
    [9]
    Mo T Q, Chen Z J, Li B X, et al. Tailoring of interface structure and mechanical properties in ARBed 1100/ 7075 laminated composites by cold rolling. Mater Sci Eng A, 2019, 755: 97 doi: 10.1016/j.msea.2019.03.075
    [10]
    龔深, 李周, 肖柱, 等. 爆炸焊接法制備金屬復合材料的研究. 材料導報, 2007, 21(專輯): 249

    Gong S, Li Z, Xiao Z, er al. Research on preparation of metallic composite with explosive welding. Mater Rev, 2007, 21(Spec): 249
    [11]
    陳靖, 佟建國, 任學平. 25Cr5MoA/Q235鋼復合板的結合性能. 北京科技大學學報, 2007, 29(10):985 doi: 10.3321/j.issn:1001-053x.2007.10.004

    Chen J, Tong J G, Ren X P. Bonding behavior of 25Cr5MoA/Q235 hot rolled clad plates. J Univ Sci Technol Beijing, 2007, 29(10): 985 doi: 10.3321/j.issn:1001-053x.2007.10.004
    [12]
    秦勤, 鄧俊超, 臧勇, 等. 熱壓316L/Q345R復合板的結合性能. 工程科學學報, 2018, 40(4):469

    Qin Q, Deng J C, Zang Y, et al. Factors influencing the combined performance of hot-rolled bimetallic composite plates prepared via hot compression. Chin J Eng, 2018, 40(4): 469
    [13]
    Zhu H F, Sun W, Kong F T, et al. Interfacial characteristics and mechanical properties of TiAl/Ti6Al4V laminate composite (LMC) fabricated by vacuum hot pressing. Mater Sci Eng A, 2019, 742: 704 doi: 10.1016/j.msea.2018.07.086
    [14]
    Elias L, Hegde A C. Electrodeposition of laminar coatings of Ni-W alloy and their corrosion behaviour. Surf Coat Technol, 2015, 283: 61 doi: 10.1016/j.surfcoat.2015.10.025
    [15]
    孟憲靜. 層狀金屬復合材料制備技術現狀及發展方向. 一重技術, 2009(6):7 doi: 10.3969/j.issn.1673-3355.2009.06.003

    Meng X J. Present status and developmental direction for manufacturing technique of laminar composite metal. CFHI Technol, 2009(6): 7 doi: 10.3969/j.issn.1673-3355.2009.06.003
    [16]
    韓剛, 蔣曉博, 程飛, 等. 鎂合金層狀復合材料的爆炸焊接研究. 工程爆破, 2018, 24(4):71 doi: 10.3969/j.issn.1006-7051.2018.04.014

    Han G, Jiang X B, Cheng F, et al. Research on explosive welding of magnesium alloy laminated composites. Eng Blast, 2018, 24(4): 71 doi: 10.3969/j.issn.1006-7051.2018.04.014
    [17]
    王航, 李曉峰, 張煜, 等. 爆炸焊接層狀復合材料國內外發展現況及應用領域簡介. 中國鈦業, 2017(1):16

    Wang H, Li X F, Zhang Y, et al. Development and applications of explosive welding layered composite materials at home and abroad. China Tit Ind, 2017(1): 16
    [18]
    Li L, Nagai K, Yin F X. Progress in cold roll bonding of metals. Sci Technol Adv Mater, 2008, 9(2): 023001 doi: 10.1088/1468-6996/9/2/023001
    [19]
    Mo T Q, Chen Z J, Chen H, et al. Multiscale interfacial structure strengthening effect in Al alloy laminated metal composites fabricated by accumulative roll bonding. Mater Sci Eng A, 2019, 766: 138354 doi: 10.1016/j.msea.2019.138354
    [20]
    Kümmel F, Haus?l T, H?ppel H W, et al. Enhanced fatigue lives in AA1050A/AA5005 laminated metal composites produced by accumulative roll bonding. Acta Mater, 2016, 120: 150 doi: 10.1016/j.actamat.2016.08.039
    [21]
    Li X B, Zu G Y, Wang P. Microstructural development and its effects on mechanical properties of Al/Cu laminated composite. Trans Nonferrous Met Soc China, 2015, 25(1): 36 doi: 10.1016/S1003-6326(15)63576-2
    [22]
    Kümmel F, Diepold B, Sauer K F, et al. High lightweight potential of ultrafine-grained aluminum/steel laminated metal composites produced by sccumulative roll bonding. Adv Eng Mater, 2019, 21(1): 1800286 doi: 10.1002/adem.201800286
    [23]
    Rahdari M, Reihanian M, Lari Baghal S M. Microstructural control and layer continuity in deformation bonding of metallic laminated composites. Mater Sci Eng A, 2018, 738: 98 doi: 10.1016/j.msea.2018.09.080
    [24]
    Mashhadi A, Atrian A, Ghalandari L. Mechanical and microstructural investigation of Zn/Sn multilayered composites fabricated by accumulative roll bonding (ARB) process. J Alloys Compd, 2017, 727: 1314 doi: 10.1016/j.jallcom.2017.08.241
    [25]
    Mahdavian M M, Ghalandari L, Reihanian M. Accumulative roll bonding of multilayered Cu/Zn/Al: an evaluation of microstructure and mechanical properties. Mater Sci Eng A, 2013, 579: 99 doi: 10.1016/j.msea.2013.05.002
    [26]
    Mahdavian M M, Khatami-Hamedani H, Abedi H R. Macrostructure evolution and mechanical properties of accumulative roll bonded Al/Cu/Sn multilayer composite. J Alloys Compd, 2017, 703: 605 doi: 10.1016/j.jallcom.2017.01.300
    [27]
    Roy S, Nataraj B R, Suwas S, et al. Accumulative roll bonding of aluminum alloys 2219/5086 laminates: microstructural evolution and tensile properties. Mater Des, 2012, 36: 529 doi: 10.1016/j.matdes.2011.11.015
    [28]
    Ghalandari L, Mahdavian M, Reihanian M, et al. Production of Al/Sn multilayer composite by accumulative roll bonding (ARB): a study of microstructure and mechanical properties. Mater Sci Eng A, 2016, 661: 179 doi: 10.1016/j.msea.2016.02.070
    [29]
    Reihanian M, Naseri M. An analytical approach for necking and fracture of hard layer during accumulative roll bonding (ARB) of metallic multilayer. Mater Des, 2016, 89: 1213 doi: 10.1016/j.matdes.2015.10.088
    [30]
    Wang H, Su L H, Yu H L, et al. A new finite element model for multi-cycle accumulative roll-bonding process and experiment verification. Mater Sci Eng A, 2018, 726: 93 doi: 10.1016/j.msea.2018.04.040
    [31]
    Rohatgi A, Harach D J, Vecchio K S, rt al. Resistance-curve and fracture behavior of Ti–Al3Ti metallic-intermetallic laminate (MIL) composites. Acta Mater, 2003, 51(10): 2933 doi: 10.1016/S1359-6454(03)00108-3
    [32]
    Fan M Y, Luo Z F, Fu Z X, et al. Vacuum hot pressing and fatigue behaviors of Ti/Al laminate composites. Vacuum, 2018, 154: 101 doi: 10.1016/j.vacuum.2018.04.047
    [33]
    Jiao F F, Liu M Y, Jiang F C, et al. Continuous carbon fiber reinforced Ti/Al3Ti metal-intermetallic laminate (MIL) composites fabricated using ultrasonic consolidation assisted hot pressing sintering. Mater Sci Eng A, 2019, 765: 138255 doi: 10.1016/j.msea.2019.138255
    [34]
    Torabinejad V, Aliofkhazraei M, Rouhaghdam A S, et al. Tribological performance of Ni–Fe–Al2O3 multilayer coatings deposited by pulse electrodeposition. Wear, 2017, 380-381: 115 doi: 10.1016/j.wear.2017.03.013
    [35]
    Allahyarzadeh M H, Aliofkhazraei M, Rouhaghdam A S, et al. Electrodeposition mechanism and corrosion behavior of multilayer nanocrystalline nickel-tungsten alloy. Electrochim Acta, 2017, 258: 883 doi: 10.1016/j.electacta.2017.11.139
    [36]
    Peng C, Zhao Y H, Jin S J, et al. Antibacterial TiCu/TiCuN multilayer films with good corrosion resistance deposited by axial magnetic field-enhanced arc ion plating. ACS Appl Mater Interfaces, 2019, 11(1): 125 doi: 10.1021/acsami.8b14038
    [37]
    Zhang L, Meng L. Evolution of microstructure and electrical resistivity of Cu–12wt.%Ag filamentary microcomposite with drawing deformation. Scripta Mater, 2005, 52(12): 1187 doi: 10.1016/j.scriptamat.2005.03.016
    [38]
    Ghalandari L, Moshksar M M. High-strength and high-conductive Cu/Ag multilayer produced by ARB. J Alloys Compd, 2010, 506(1): 172 doi: 10.1016/j.jallcom.2010.06.172
    [39]
    Huo J Z, Wei M Z, Ma Y J, et al. The enhanced strength and electrical conductivity in Ag/Cu multilayers by annealing process. Mater Sci Eng A, 2020, 772: 138818 doi: 10.1016/j.msea.2019.138818
    [40]
    DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components - Process, structure and properties. Prog Mater Sci, 2018, 92: 112 doi: 10.1016/j.pmatsci.2017.10.001
    [41]
    Lima D D, Mantri S A, Mikler C V, et al. Laser additive processing of a functionally graded internal fracture fixation plate. Mater Des, 2017, 130: 8 doi: 10.1016/j.matdes.2017.05.034
    [42]
    Behera R R, Hasan A, Sankar M S, et al. Laser cladding with HA and functionally graded TiO2-HA precursors on Ti–6Al–4V alloy for enhancing bioactivity and cyto-compatibility. Surf Coat Technol, 2018, 352: 420 doi: 10.1016/j.surfcoat.2018.08.044
    [43]
    Liu W P, DuPont J N. Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping. Scripta Mater, 2003, 48(9): 1337 doi: 10.1016/S1359-6462(03)00020-4
    [44]
    Zhang T, Xu H, Li Z J, et al. Microstructure and properties of TC4/TNTZO multi-layered composite by direct laser deposition. J Mech Behav Biomed Mater, 2020, 109: 103842 doi: 10.1016/j.jmbbm.2020.103842
    [45]
    Markandan K, Lim R, Kanaujia P K, et. al. Additive manufacturing of composite materials and functionally graded structures using selective heat melting technique. J Mater Sci Technol, 2020, 47: 243 doi: 10.1016/j.jmst.2019.12.016
    [46]
    Du D F, Haley J C, Dong A P, et al. Influence of static magnetic field on microstructure and mechanical behavior of selective laser melted AlSi10Mg alloy. Mater Des, 2019, 181: 107923 doi: 10.1016/j.matdes.2019.107923
    [47]
    Todaro C J, Easton M A, Qiu D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound. Nat Commun, 2020, 11: 142 doi: 10.1038/s41467-019-13874-z
    [48]
    Cohades A, Cetin A, Mortensen A. Designing laminated metal composites for tensile ductility. Mater Des, 2015, 66: 412 doi: 10.1016/j.matdes.2014.08.061
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (6930) PDF downloads(442) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频