Citation: | LI Xue-han, HU Si-quan, SHI Zhi-guo, ZHANG Ming. Micro-expression recognition algorithm based on separate long-term recurrent convolutional network[J]. Chinese Journal of Engineering, 2022, 44(1): 104-113. doi: 10.13374/j.issn2095-9389.2020.06.15.006 |
[1] |
Mehrabian A. Nonverbal Communication. New York: Routledge, 2017
|
[2] |
Ekman P. Facial expression and emotion. Am Psychol, 1993, 48(4): 384 doi: 10.1037/0003-066X.48.4.384
|
[3] |
Ekman P, Friesen W V. Nonverbal leakage and clues to deception. Psychiatry, 1969, 32(1): 88 doi: 10.1080/00332747.1969.11023575
|
[4] |
Yan W J, Wang S J, Liu Y J, et al. For micro-expression recognition: Database and suggestions. Neurocomputing, 2014, 136(136): 82
|
[5] |
王思宇. 基于CNN-RNN的微表情識別[學位論文]. 哈爾濱: 哈爾濱工程大學, 2018
Wang S Y. CNN-RNN Based Micro-Expression Recognition [Dissertation]. Harbin: Harbin Engineering University, 2018
|
[6] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Commun ACM, 2017, 60(6): 84 doi: 10.1145/3065386
|
[7] |
Donahue J, Hendricks L A, Guadarrama S, et al. Long-term recurrent convolutional networks for visual recognition and description // 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, 2015: 2625
|
[8] |
Ekman P, Rosenberg E L. What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS). 2nd Ed. USA: Oxford University Press, 2005
|
[9] |
Gunes H, Pantic M. Automatic, dimensional and continuous emotion recognition. Int J Synthetic Emotions, 2010, 1(1): 68 doi: 10.4018/jse.2010101605
|
[10] |
Song Y L, Morency L P, Davis R. Learning a sparse codebook of facial and body microexpressions for emotion recognition // Proceedings of the 15th ACM International Conference on Multimodal Interaction. New York, 2013: 237
|
[11] |
李丹, 解侖, 盧婷, 等. 基于光流方向信息熵統計的微表情捕捉. 工程科學學報, 2017(11):1727
Li D, Xie L, Lu T, et al. Capture of microexpressions based on the entropy of oriented optical flow. Chin J Eng, 2017(11): 1727
|
[12] |
Polikovsky S, Kameda Y, Ohta Y. Facial micro-expression detection in Hi-speed video based on facial action coding system (FACS). IEICE Trans Inform Syst, 2013, E96-D(1): 81 doi: 10.1587/transinf.E96.D.81
|
[13] |
Shreve M, Godavarthy S, Goldgof D, et al. Macro- and micro-expression spotting in long videos using spatio-temporal strain // 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG). Santa Barbara, 2011: 51
|
[14] |
Pfister T, Li X B, Zhao G Y, et al. Recognising spontaneous facial micro-expressions // 2011 International Conference on Computer Vision. Barcelona, 2011: 1449
|
[15] |
梁靜, 顏文靖, 吳奇, 等. 微表情研究的進展與展望. 中國科學基金, 2013(2):75
Liang J, Yan W J, Wu Q, et al. Recent advances and future trends in micro-expression research. Bull Natl Nat Sci Foundation China, 2013(2): 75
|
[16] |
Wang Y D, See J, Phan R C W, et al. LBP with six intersection points: Reducing redundant information in LBP-TOP for micro-expression recognition // Asian Conference on Computer Vision ? ACCV2014. Switzerland, 2015: 525
|
[17] |
Liong S T, See J, Phan R C W, et al. Spontaneous subtle expression detection and recognition based on facial strain. Signal Process Image Commun, 2016, 47: 170 doi: 10.1016/j.image.2016.06.004
|
[18] |
Le Ngo A C, See J, Phan R C W. Sparsity in dynamics of spontaneous subtle emotion: analysis & application. IEEE Trans Affective Comput, 2017, 8(3): 396 doi: 10.1109/TAFFC.2016.2523996
|
[19] |
Xu F, Zhang J P, Wang J Z. Microexpression identification and categorization using a facial dynamics map. IEEE Trans Affective Comput, 2017, 8(2): 254 doi: 10.1109/TAFFC.2016.2518162
|
[20] |
Patel D, Hong X P, Zhao G Y. Selective deep features for micro-expression recognition // 2016 23rd International Conference on Pattern Recognition (ICPR). Cancun, 2016: 2258
|
[21] |
Kim D H, Baddar W J, Ro Y M. Micro-expression recognition with expression-state constrained spatio-temporal feature representations // Proceedings of the 24th ACM international conference on Multimedia. Amsterdam, 2016: 382
|
[22] |
Khor H Q, See J, Phan R C W, et al. Enriched long-term recurrent convolutional network for facial micro-expression recognition // 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2018). Xi’an, 2018: 667
|
[23] |
Verburg M, Menkovski V. Micro-expression detection in long videos using optical flow and recurrent neural networks // 2019 14th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2019). Lille, 2019: 1
|
[24] |
Itti L, Koch C. Computational modelling of visual attention. Nat Rev Neurosci, 2001, 2(3): 194 doi: 10.1038/35058500
|
[25] |
Wang C Y, Peng M, Bi T, et al. Micro-attention for micro-expression recognition [J/OL]. arXiv Preprint (2019-08-27) [2020-04-21]. https://arxiv.org/abs/1811.02360.
|
[26] |
Parkhi O M, Vedaldi A, Zisserman A. Deep face recognition // Proceedings of the British Machine Vision Conference (BMVC). Swansea, 2015: 45
|
[27] |
Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell, 2020, 42(8): 2011 doi: 10.1109/TPAMI.2019.2913372
|
[28] |
Cao Q, Shen L, Xie W D, et al. VGGFace2: A dataset for recognising faces across pose and age // 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2018). Xi’an, 2018: 67
|
[29] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 770
|
[30] |
Cootes T F, Edwards G J, Taylor C J. Active appearance models. IEEE Trans Pattern Anal Mach Intell, 2001, 23(6): 681 doi: 10.1109/34.927467
|
[31] |
彭敏. 基于雙時間尺度卷積神經網絡的微表情識別[學位論文]. 重慶: 西南大學, 2017
Peng M. Dual Temporal Scale Convolutional Neural Network for Micro-Expression Recognition [Dissertation]. Chongqing: Southwest University, 2017
|
[32] |
Yan W J, Li X B, Wang S J, et al. CASME II: An improved spontaneous micro-expression database and the baseline evaluation. PLoS ONE, 2014, 9(1): e86041 doi: 10.1371/journal.pone.0086041
|
[33] |
Zhou Z H, Zhao G Y, Pietikinen M. Towards a practical lipreading system // The 24th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2011). Providence, RI, 2011: 137
|
[34] |
Zhao G Y, Pietikainen M. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell, 2007, 29(6): 915 doi: 10.1109/TPAMI.2007.1110
|
[35] |
Huang X H, Zhao G Y, Hong X P, et al. Spontaneous facial micro-expression analysis using spatiotemporal completed local quantized patterns. Neurocomputing, 2016, 175: 564 doi: 10.1016/j.neucom.2015.10.096
|