<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
ZHOU Xu, RUAN Zhu-en, WU Ai-xiang, WANG Hong-jiang, WANG Yi-ming, YIN Sheng-hua. Aggregate evolution rule during tailings thickening based on FBRM and PVM[J]. Chinese Journal of Engineering, 2021, 43(11): 1425-1432. doi: 10.13374/j.issn2095-9389.2020.06.02.004
Citation: ZHOU Xu, RUAN Zhu-en, WU Ai-xiang, WANG Hong-jiang, WANG Yi-ming, YIN Sheng-hua. Aggregate evolution rule during tailings thickening based on FBRM and PVM[J]. Chinese Journal of Engineering, 2021, 43(11): 1425-1432. doi: 10.13374/j.issn2095-9389.2020.06.02.004

Aggregate evolution rule during tailings thickening based on FBRM and PVM

doi: 10.13374/j.issn2095-9389.2020.06.02.004
More Information
  • The real-time inline monitoring technologies of focused beam reflectance measurement (FBRM) and particle video microscopy (PVM) were used to analyze the aggregate structure evolution during the operation of a dynamic thickening system. The tailings dewatering studies were performed under two series of conditions: (i) rake rotation speeds of 0, 0.1, 1, and 10 r·min?1 and an initial mud bed height of 75 cm and (ii) initial mud bed heights of 75, 45, and 25 cm and a rake rotation speed of 0.1 r·min?1. The aggregate diameter, particle size distribution, and real-time images of the tailings thickening process were obtained. The results show that with the increase in the shearing time, the diameter and counts of aggregate first increase, then decrease, and then become stable. According to the aggregate diameter variation, the aggregate evolution can be divided into three stages: growth, reconstruction, and densification periods. The condition of a shear rate of 0.1 r·min?1 and an initial mud bed height of 75 cm has the best effects on the aggregate growth, structure breaking acceleration, aggregate reconstruction, and aggregate densification improvement, as determined in the laboratory; however, high shear rate has a degrading effect on the aggregate structure evolution. The aggregate diameter progressively decreases with the increase in the shear rate. The longer the aggregate growth period, the larger the maximum aggregate diameter, and a longer reconstruction period is observed at higher initial mud bed heights. Moreover, the aggregate diameter increases with the increase in the initial mud bed height. The fractal dimension of tailings aggregate reflects the change characteristics of the aggregate structure. According to the calculation of fractal dimension and porosity of the PVM image, the dynamic equilibrium relastionship between the breaking force and cohesive force of aggregates was analyzed, the influence on the aggregate breaking was analyzed. The aggregate densification rule in the tailings thickening process was revealed analyzed, based on the dynamic equilibrium relationship between the breaking force and cohesive force of aggregates.

     

  • loading
  • [1]
    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517

    Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517
    [2]
    張乃予, 周晶晶, 王捷. 黏性泥沙絮團強度的試驗研究綜述. 泥沙研究, 2015(5):75

    Zhang N Y, Zhou J J, Wang J. A review of experimental study on floc strength of cohesive sediment. J Sediment Res, 2015(5): 75
    [3]
    孫體昌. 固液分離. 長沙: 中南大學出版社, 2011

    Sun T C. Solid and Liquid Separation. Changsha: Central South University Press, 2011
    [4]
    常青. 水處理絮凝學. 北京: 化學工業出版社, 2003

    Chang Q. Water Treatment Flocculation. Beijing: Chemical Industry Press, 2003
    [5]
    Tombaz E, Szekeres M. Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Appl Clay Sci, 2006, 34(1-4): 105 doi: 10.1016/j.clay.2006.05.009
    [6]
    Jarvis P, Jefferson B, Gregory J, et al. A review of floc strength and breakage. Water Res, 2005, 39(14): 312l
    [7]
    Gladman B R, Rudman M, Scales P J. The effect of shear on gravity thickening: Pilot scale modelling. Chem Eng Sci, 2010, 65(14): 4293 doi: 10.1016/j.ces.2010.04.010
    [8]
    張乃予, 周晶晶, 王捷. 泥沙絮團結構的試驗研究綜述. 泥沙研究, 2016(1):76

    Zhang N Y, Zhou J J, Wang J. A review of experimental study on floc structure of cohesive sediment. J Sediment Res, 2016(1): 76
    [9]
    Wu A X, Ruan Z E, Bürger R, et al. Optimization of flocculation and settling parameters of tailings slurry by response surface methodology. Miner Eng, 2020, 156: 106488 doi: 10.1016/j.mineng.2020.106488
    [10]
    郭超, 何青, 郭磊城, 等. 紊動對黏性細顆粒泥沙絮凝沉降影響的試驗研究. 泥沙研究, 2019, 44(2):18

    Guo C, He Q, Guo L C, et al. Study on the effects of turbulence on cohesive sediment flocculation and settling properties. J Sediment Res, 2019, 44(2): 18
    [11]
    葉健. 絮凝動力學及其絮體的特性的初步研究[學位論文]. 廣州: 華南理工大學, 2011

    Ye J. A Preliminary Study on Flocculation Kinetics and Characteristics of Flocs [Dissertation]. Guangzhou: South China University of Technology, 2011
    [12]
    Nguyen T, Heath A, Witt P. Population balance-CFD modelling of fluid flow, solids distribution and flocculation in thickener feedwells // Fifth International Conference on CFD in the Process Industries. Melbourne, 2006
    [13]
    Owen A T, Nguyen T V, Fawell P D. The effect of flocculant solution transport and addition conditions on feedwell performance in gravity thickeners. Int J Miner Process, 2009, 93(2): 115 doi: 10.1016/j.minpro.2009.07.001
    [14]
    Greaves D, Boxall J, Mulligan J, et al. Measuring the particle size of a known distribution using the focused beam reflectance measurement technique. Chem Eng Sci, 2008, 63(22): 5410 doi: 10.1016/j.ces.2008.07.023
    [15]
    Selomulya C, Bushell G, Amal R, et al. Aggregate properties in relation to aggregation conditions under various applied shear environments. Int J Miner Process, 2004, 73(2-4): 295 doi: 10.1016/j.minpro.2003.09.003
    [16]
    Serra T, Colomer J, Logan B E. Efficiency of different shear devices on flocculation. Water Res, 2008, 42(4-5): 1113 doi: 10.1016/j.watres.2007.08.027
    [17]
    Oyegbile B, Ay P, Narra S. Flocculation kinetics and hydrodynamic interactions in natural and engineered flow systems: A review. Environ Eng Res, 2016, 21(1): 1 doi: 10.4491/eer.2015.086
    [18]
    Bubakova P, Pivokonsky M, Filip P. Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state. Powder Technol, 2013, 235: 540 doi: 10.1016/j.powtec.2012.11.014
    [19]
    Coufort C, Bouyer D, Liné A. Flocculation related to local hydrodynamics in a Taylor–Couette reactor and in a jar. Chem Eng Sci, 2005, 60(8-9): 2179 doi: 10.1016/j.ces.2004.10.038
    [20]
    Lu S C, Ding Y Q, Guo J Y. Kinetics of fine particle aggregation in turbulence. Adv Colloid Interface Sci, 1998, 78(3): 197 doi: 10.1016/S0001-8686(98)00062-1
    [21]
    He J G, Liu J, Yuan Y X, et al. A novel quantitative method for evaluating floc strength under turbulent flow conditions. Desalination Water Treat, 2015, 56(7): 1975 doi: 10.1080/19443994.2014.958107
    [22]
    Bouyer D, Liné A, Do-Quang Z. Experimental analysis of floc size distribution under different hydrodynamics in a mixing tank. AIChE J, 2004, 50(9): 2064 doi: 10.1002/aic.10242
    [23]
    Spicer P T, Pratsinis S E. Shear-induced flocculation: the evolution of floc structure and the shape of the size distribution at steady state. Wat Res, 1996, 30(5): 1049 doi: 10.1016/0043-1354(95)00253-7
    [24]
    王曉昌, 丹保憲仁. 絮凝體形態學和密度的探討—Ⅰ. 從絮凝體分形構造談起. 環境科學學報, 2000, 20(3):257 doi: 10.3321/j.issn:0253-2468.2000.03.001

    Wang X C, Tambo N. A study on the morphology and density of flocus-I. The fractal structure of floc. Acta Sci Circum, 2000, 20(3): 257 doi: 10.3321/j.issn:0253-2468.2000.03.001
    [25]
    Glaman B R. The Effect of Shear on Dewatering of Flocculated Suspensions [Dissertation]. Mlebourne: the University of Mlebourne, 2005
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)

    Article views (1579) PDF downloads(182) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频