Citation: | WANG Zhen-yang, JIANG De-wen, WANG Xin-dong, ZHANG Jian-liang, LIU Zheng-jian, ZHAO Bao-jun. Prediction of blast furnace hot metal temperature based on support vector regression and extreme learning machine[J]. Chinese Journal of Engineering, 2021, 43(4): 569-576. doi: 10.13374/j.issn2095-9389.2020.05.28.001 |
[1] |
Wang Z Y, Zhang J L, Liu Z J, et al. Status, technological progress, and development directions of the ironmaking industry in China. Ironmaking Steelmaking, 2019, 46(10): 937 doi: 10.1080/03019233.2019.1697111
|
[2] |
Wang Z Y, Zhang J L, An G, et al. Analysis on the oversize blast furnace desulfurization and a sulfide capacity prediction model based on congregated electron phase. Metall Mater Trans B, 2016, 47(1): 127 doi: 10.1007/s11663-015-0462-3
|
[3] |
Martin R D, Obeso F, Mochon J, et al. Hot metal temperature prediction in blast furnace using advanced model based on fuzzy logic tools. Ironmaking Steelmaking, 2007, 34(3): 241 doi: 10.1179/174328107X155358
|
[4] |
Jimenez J, Mochon J, de Ayala J S, et al. Blast furnace hot metal temperature prediction through neural networks-based models. ISIJ Int, 2004, 44(3): 573 doi: 10.2355/isijinternational.44.573
|
[5] |
Ding Z Y, Zhang J, Liu Y. Ensemble non-Gaussian local regression for industrial silicon content prediction. ISIJ Int, 2017, 57(11): 2022 doi: 10.2355/isijinternational.ISIJINT-2017-251
|
[6] |
Gao C H, Chen J M, Zeng J S, et al. A chaos-based iterated multistep predictor for blast furnace ironmaking process. AIChE J, 2009, 55(4): 947 doi: 10.1002/aic.11724
|
[7] |
崔桂梅, 李靜, 張勇, 等. 基于T-S模糊神經網絡模型的高爐鐵水溫度預測建模. 鋼鐵, 2013, 48(11):11
Cui G M, Li J, Zhang Y, et al. Prediction modeling study for blast furnace hot metal temperature based on T-S fuzzy neural network model. Iron Steel, 2013, 48(11): 11
|
[8] |
崔桂梅, 程史. 基于分布式神經網絡模型的高爐爐溫預測建模. 鋼鐵研究學報, 2014, 26(6):27
Cui G M, Cheng S. Predictive modeling of blast furnace temperature by using distributed neural network model. J Iron Steel Res, 2014, 26(6): 27
|
[9] |
石琳, 湯佳佳, 于濤, 等. 基于樣條變換的非線性PLS的反應高爐爐溫的參數預測. 鋼鐵研究學報, 2013, 25(2):20
Shi L, Tang J J, Yu T, et al. Parameters prediction on furnace temperature on blast furnace based on a nonlinear spline transform-PLS. J Iron Steel Res, 2013, 25(2): 20
|
[10] |
Zhang X M, Kano M, Matsuzaki S. A comparative study of deep and shallow predictive techniques for hot metal temperature prediction in blast furnace ironmaking. Comput Chem Eng, 2019, 130: 106575 doi: 10.1016/j.compchemeng.2019.106575
|
[11] |
Zhang X M, Kano M, Matsuzaki S. Ensemble pattern trees for predicting hot metal temperature in blast furnace. Comput Chem Eng, 2019, 121: 442 doi: 10.1016/j.compchemeng.2018.10.022
|
[12] |
Diaz J, Fernandez F J, Prieto M M. Hot metal temperature forecasting at steel plant using multivariate adaptive regression splines. Metals, 2020, 10(1): 41
|
[13] |
Hashimoto Y, Sawa Y, Kano M. Online prediction of hot metal temperature using transient model and moving horizon estimation. ISIJ Int, 2019, 59(9): 1534 doi: 10.2355/isijinternational.ISIJINT-2019-101
|
[14] |
Su X L, Zhang S, Yin Y X, et al. Prediction model of hot metal temperature for blast furnace based on improved multi-layer extreme learning machine. Int J Mach Learn Cybern, 2019, 10(10): 2739 doi: 10.1007/s13042-018-0897-3
|
[15] |
Zhao H, Zhao D T, Yue Y J, et al. Study on prediction method of hot metal temperature in blast furnace // IEEE International Conference on Mechatronics and Automation. Takamatsu, 2017: 316.
|
[16] |
Wang Y K, Liu X Y, Zhang B L. On feature selection and blast furnace temperature tendency prediction in hot metal based on SVM-RFE // Australian and New Zealand Control Conference. Melbourne, 2018: 371.
|
[17] |
Yue Y J, Dong A, Zhao H, et al. Study on prediction model of blast furnace hot metal temperature // IEEE International Conference on Mechatronics and Automation. Harbin, 2016: 1396.
|
[18] |
Liu Y, Gao Z. Enhanced just-in-time modelling for online quality prediction in BF ironmaking. Ironmaking Steelmaking, 2015, 42(5): 321 doi: 10.1179/1743281214Y.0000000229
|
[19] |
郭東偉, 周平. 基于稀疏化魯棒LS-SVR與多目標優化的鐵水硅含量軟測量建模. 工程科學學報, 2016, 38(9):1233
Guo D W, Zhou P. Soft-sensor modeling of silicon content in hot metal based on sparse robust LS-SVR and multi-objective optimization. Chin J Eng, 2016, 38(9): 1233
|
[20] |
張海剛, 張森, 尹怡欣. 基于全局優化支持向量機的多類別高爐故障診斷. 工程科學學報, 2017, 39(1):39
Zhang H G, Zhang S, Yin Y X. Multi-class fault diagnosis of BF based on global optimization LS-SVM. Chin J Eng, 2017, 39(1): 39
|
[21] |
褚菲, 葉俊鋒, 馬小平, 等. 基于OS-ELM的CCPP副產煤氣燃料系統在線性能預測. 工程科學學報, 2016, 38(6):861
Chu F, Ye J F, Ma X P, et al. Online performance prediction of CCPP byproduct coal-gas system based on online sequential extreme learning machine. Chin J Eng, 2016, 38(6): 861
|
[22] |
李愛蓮, 趙永明, 崔桂梅. 基于灰色關聯分析的ELM高爐溫度預測模型. 鋼鐵研究學報, 2015, 27(11):33
Li A L, Zhao Y M, Cui G M. Prediction model of blast furnace temperature based on ELM with grey correlation analysis. J Iron Steel Res, 2015, 27(11): 33
|
[23] |
陳恒志, 楊建平, 盧新春, 等. 基于極限學習機(ELM)的連鑄坯質量預測. 工程科學學報, 2018, 40(7):815
Chen H Z, Yang J P, Lu X C, et al. Quality prediction of the continuous casting bloom based on the extreme learning machine. Chin J Eng, 2018, 40(7): 815
|
[24] |
陳鵬, 李擎, 張德政, 等. 多模態學習方法綜述. 工程科學學報, 2020, 42(5):557
Chen P, Li Q, Zhang D Z, et al. A survey of multimodal machine learning. Chin J Eng, 2020, 42(5): 557
|
[25] |
Tunckaya Y. Performance assessment of permeability index prediction in an ironmaking process via soft computing techniques. Proc Inst Mech Eng Part E-J Process Mech Eng, 2017, 231(6): 1101 doi: 10.1177/0954408916654199
|