<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
YANG Jian-ping, ZHANG Jiang-shan, LIU Qing. Research progress on three kinds of classic process interface technologies in steelmaking-continuous casting section[J]. Chinese Journal of Engineering, 2020, 42(12): 1542-1556. doi: 10.13374/j.issn2095-9389.2020.05.08.001
Citation: YANG Jian-ping, ZHANG Jiang-shan, LIU Qing. Research progress on three kinds of classic process interface technologies in steelmaking-continuous casting section[J]. Chinese Journal of Engineering, 2020, 42(12): 1542-1556. doi: 10.13374/j.issn2095-9389.2020.05.08.001

Research progress on three kinds of classic process interface technologies in steelmaking-continuous casting section

doi: 10.13374/j.issn2095-9389.2020.05.08.001
More Information
  • Corresponding author: E-mail: qliu@ustb.edu.cn
  • Received Date: 2020-05-08
  • Publish Date: 2020-12-25
  • Metallurgical process engineering proposed by academician Ruiyu Yin is a new branch in the field of metallurgy, which deals with the physical nature, structure, and global behavior of metallurgical manufacturing process. Process interface technology used in steelmaking-continuous casting section (SCCS) is developed from metallurgical process engineering. It is used to study and analyze the running dynamics of mass flow in steelmaking plants. In recent years, the intelligent and green production in steelmaking plants has become the demand and necessity of the time because of the rapid development of intelligent manufacturing represented by Industry 4.0 in Germany. Nowadays, the automation control of single-process has been realized in most steelmaking plants at home and abroad, which is a stepping zone and has created the foundation for the intelligent and green production. But at the same time, importance also should be given for the improvement in the multi-process operation of SCCS considering the global optimization on steelmaking production. Undoubtedly the process interface technology is an important method to deal with the collaboration-optimization of process relationship set, but also it has a greater influence on the analysis-optimization of process function set and the reconstruction-optimization of process set. Therefore, the process interface technology has created lot of interest and drawn greater attention from scholars and experts of metallurgy, which results in the great improvement of the multi-process operation in SCCS. Currently, three kinds of classic process interface technologies, including ladle cycling control, crane running control, and operation mode optimization, have become the most important research areas because of their significant effect on the high-efficient connection of mass flow among multi-process. The scope of ladle cycling control includes the monitoring of thermal state and the matching and scheduling of ladles. The task assignment and multi-crane collaborative scheduling are the most important components of crane running control and it is of great interest to research further. When operation mode optimization is considered, the improvement of furnace-caster coordinating mode based on the matching of capacity and rhythm can be regarded as the most interesting research area. It is known that the operation mode is the fundamental for ladle cycling and crane running, and moreover, the status of ladle cycling and crane running also can guide the further optimization of operation mode. Based on above analysis, this paper presented a detailed overview of progress made in the research on abovementioned three kinds of classic process interface technologies in SCCS. Further, the necessity of collaboration between process interface technologies was also illustrated, aiming at unfavorable restraints of multi-process collaborative operation. In addition, the collaboration mechanisms and schemes of all three kinds of classic process interface technologies were described in detail. Finally, it is expected that this review could offer some reference and guidance for the improvements in multi-process operation of SCCS.

     

  • loading
  • [1]
    Zhong R Y, Xu X, Klotz E, et al. Intelligent manufacturing in the context of Industry 4.0: a review. Engineering, 2017, 3(5): 616 doi: 10.1016/J.ENG.2017.05.015
    [2]
    殷瑞鈺. 關于智能化鋼廠的討論—從物理系統一側出發討論鋼廠智能化. 鋼鐵, 2017, 52(6):1

    Yin R Y. A discussion on “smart” steel plant—view from physical system side. Iron Steel, 2017, 52(6): 1
    [3]
    殷瑞鈺. 冶金流程工程學. 2版. 北京: 冶金工業出版社, 2011

    Yin R Y. Metallurgical Process Engineering. 2nd Ed. Beijing: Metallurgical Industry Press, 2011
    [4]
    劉青, 田乃媛, 殷瑞鈺. 煉鋼廠的運行控制. 鋼鐵, 2003, 38(9):14 doi: 10.3321/j.issn:0449-749X.2003.09.004

    Liu Q, Tian N Y, Yin R Y. Running control for steelmaking workshop. Iron Steel, 2003, 38(9): 14 doi: 10.3321/j.issn:0449-749X.2003.09.004
    [5]
    Semura K, Matsuura H. Past development and future prospects of secondary refining technology. Tetsu-to-Hagane, 2014, 100(4): 456 doi: 10.2355/tetsutohagane.100.456
    [6]
    王鋒, 田乃媛, 賀東風, 等. 在線雙工位LF有效利用系數的討論. 煉鋼, 2011, 27(1):71

    Wang F, Tian N Y, He D F, et al. Discussion on effective utilization coefficient of online two-operating position LF. Steelmaking, 2011, 27(1): 71
    [7]
    王剛, 王彬, 王寶, 等. 基于“爐機對應”原則的煉鋼–連鑄調度模型. 北京科技大學學報, 2013, 35(8):1080

    Wang G, Wang B, Wang B, et al. Scheduling model for steelmaking-continuous casting process based on “furnace-caster matching” principle. J Univ Sci Technol Beijing, 2013, 35(8): 1080
    [8]
    余相灼, 楊建平, 李想, 等. 基于“爐機對應”原則的連澆優化方案. 中國冶金, 2019, 29(4):22

    Yu X Z, Yang J P, Li X, et al. Optimized scheme of sequence casting based on "furnace-caster matching" principle. China Metall, 2019, 29(4): 22
    [9]
    Feng K, He D F, Xu A J, et al. End temperature prediction of molten steel in LF based on CBR-BBN. Steel Res Int, 2016, 87(1): 79 doi: 10.1002/srin.201400512
    [10]
    Bao Y P, Li X, Wang M. A novel method for endpoint temperature prediction in RH. Ironmaking Steelmaking, 2019, 46(4): 343 doi: 10.1080/03019233.2017.1392104
    [11]
    付國慶, 劉青, 汪宙, 等. LF精煉終點鋼水溫度灰箱預報模型. 北京科技大學學報, 2013, 35(7):948

    Fu G Q, Liu Q, Wang Z, et al. Grey box model for predicting the LF end-point temperature of molten steel. J Univ Sci Technol Beijing, 2013, 35(7): 948
    [12]
    Fredman T P. Heat transfer in steelmaking ladle refractories and steel temperature: a literature review. Scand J Metall, 2000, 29(6): 232 doi: 10.1034/j.1600-0692.2000.d01-28.x
    [13]
    吳曉東, 周丹, 鄭建忠. 煉鋼–連鑄過程300 t鋼包熱狀態測試研究. 煉鋼, 2009, 25(4):49

    Wu X D, Zhou D, Zheng J Z. Research on thermal status of 300 t ladle in the process of steel-making and continues casting. Steelmaking, 2009, 25(4): 49
    [14]
    Mazzetti-Succi V. Insulation board investigation and trials in 300 tonne steel ladles at Arcelormittal Dofasco // Proceedings of the Unified International Technical Conference on Refractories. Victoria, 2014: 703
    [15]
    Zhou J A, Xie J B, Wang B, et al. New insight into investigation of thermal transfer of molten steel inside a ladle with vacuum shell. J Therm Anal Calorim, 2017, 128(1): 481 doi: 10.1007/s10973-016-5853-4
    [16]
    Fredman T P, Saxen H. Model for temperature profile estimation in the refractory of a metallurgical ladle. Metall Mater Trans B, 1998, 29(3): 651 doi: 10.1007/s11663-998-0100-4
    [17]
    Zabadal J R S, Vilhena M T M B, Leite S Q B. Heat transfer process simulation by finite differences for online control of ladle furnaces. Ironmaking Steelmaking, 2004, 31(3): 227 doi: 10.1179/030192304225012150
    [18]
    Lu B Y, Meng X N, Zhu M Y. Numerical analysis for the heat transfer behavior of steel ladle as the thermoelectric waste-heat source. Catal Today, 2018, 318: 180 doi: 10.1016/j.cattod.2017.10.038
    [19]
    Song G W, Tama B A, Park J, et al. Temperature control optimization in a steel-making continuous casting process using a multimodal deep learning approach. Steel Res Int, 2019, 90(12): 1900321 doi: 10.1002/srin.201900321
    [20]
    張壯, 曹玲玲, 林文輝, 等. 基于IPSO-RELM轉爐冶煉終點錳含量預測模型. 工程科學學報, 2019, 41(8):1052

    Zhang Z, Cao L L, Lin W H, et al. Improved prediction model for BOF end-point manganese content based on IPSO-RELM method. Chin J Eng, 2019, 41(8): 1052
    [21]
    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436 doi: 10.1038/nature14539
    [22]
    Xia J L, Ahokainen T. Transient flow and heat transfer in a steelmaking ladle during the holding period. Metall Mater Trans B, 2001, 32(4): 733 doi: 10.1007/s11663-001-0127-2
    [23]
    Xia J L, Ahokainen T. Thermal stratification in a steel ladle. Can Metall Q, 2001, 40(4): 479 doi: 10.1179/cmq.2001.40.4.479
    [24]
    Volkova O, Janke D. Modelling of temperature distribution in refractory ladle lining for steelmaking. ISIJ Int, 2003, 43(8): 1185 doi: 10.2355/isijinternational.43.1185
    [25]
    Bj?rn G, M?rten G, Du S C. Thermal modelling of the ladle preheating process. Steel Res Int, 2011, 82(12): 1425 doi: 10.1002/srin.201100198
    [26]
    Tripathi A, Saha J K, Singh J B, et al. Numerical simulation of heat transfer phenomenon in steel making ladle. ISIJ Int, 2012, 52(9): 1591 doi: 10.2355/isijinternational.52.1591
    [27]
    Huang Y F, Xiong W, Fan Z Y. Effect of ladle thermal state on the LF endpoint temperature of molten steel // Proceedings of the 2015 4th International Conference on Sustainable Energy and Environmental Engineering. Shenzhen, 2016: 533
    [28]
    Phanomchoeng G, Chantranuwathana S, Charunyakorn P. On-line ladle lining temperature estimation by using bounded Jacobian nonlinear observer. J Iron Steel Res Int, 2016, 23(8): 792 doi: 10.1016/S1006-706X(16)30122-4
    [29]
    龔華超, 徐安軍, 袁飛, 等. 鋼包熱狀態對鋼水溫降影響因素分析算法優化. 煉鋼, 2016, 32(6):19

    Gong H C, Xu A J, Yuan F, et al. The analysis about effect of ladle thermal status on liquid steel temperature drop and algorithm optimization. Steelmaking, 2016, 32(6): 19
    [30]
    王淼. 新型耐火材料改善鋼包熱特性的研究[學位論文]. 沈陽: 東北大學, 2017

    Wang M. Study on Improvement of Thermal Properties of Ladle with New Refractory Materials[Dissertation]. Shenyang: Northeastern University, 2017
    [31]
    袁飛. 鋼包蓄熱式烘烤及周轉過程溫度模擬和優化研究[學位論文]. 北京: 北京科技大學, 2018

    Yuan F. Temperature Simulation and Optimization Research on the Processes of the Ladle Regenerative Preheating and Turnover[Dissertation]. Beijing: University of Science and Technology Beijing, 2018
    [32]
    Santos M F, Moreira M H, Campos M G G, et al. Enhanced numerical tool to evaluate steel ladle thermal losses. Ceram Int, 2018, 44(11): 12831 doi: 10.1016/j.ceramint.2018.04.092
    [33]
    Hou A D, Jin S L, Harmuth H, et al. A method for steel ladle lining optimization applying thermomechanical modeling and Taguchi approaches. JOM, 2018, 70(11): 2449 doi: 10.1007/s11837-018-3063-1
    [34]
    王恩會, 陳俊紅, 侯新梅. 鋼包工作襯用耐火材料的研究現狀及最新進展. 工程科學學報, 2019, 41(6):695

    Wang E H, Chen J H, Hou X M. Current research and latest developments on refractories used as ladle linings. Chin J Eng, 2019, 41(6): 695
    [35]
    Yan W, Wu G Y, Ma S B, et al. Energy efficient lightweight periclase-magnesium alumina spinel castables containing porous aggregates for the working lining of steel ladles. J Eur Ceram Soc, 2018, 38(12): 4276 doi: 10.1016/j.jeurceramsoc.2018.05.002
    [36]
    Gruber D, Harmuth H. Thermomechanical behavior of steel ladle linings and the influence of insulations. Steel Res Int, 2014, 85(4): 512 doi: 10.1002/srin.201300129
    [37]
    劉青, 趙平, 吳曉東, 等. 鋼包的運行控制. 北京科技大學學報, 2005, 27(2):235 doi: 10.3321/j.issn:1001-053X.2005.02.025

    Liu Q, Zhao P, Wu X D, et al. Control strategy for ladle running. J Univ Sci Technol Beijing, 2005, 27(2): 235 doi: 10.3321/j.issn:1001-053X.2005.02.025
    [38]
    Wang B, Wang B, Mu Y Q, et al. Optimization and control of ladle operation for special steel plants. Appl Mech Mater, 2014, 602-605: 899 doi: 10.4028/www.scientific.net/AMM.602-605.899
    [39]
    Huang B F, Tian N Y, Shi Z, et al. Steel ladle exchange models during steelmaking and continuous casting process. J Iron Steel Res Int, 2017, 24(6): 617 doi: 10.1016/S1006-706X(17)30093-6
    [40]
    蔡峻, 汪紅兵, 賀東風, 等. 煉鋼廠鋼包周轉率的影響因素. 北京科技大學學報, 2013, 35(8):1072

    Cai J, Wang H B, He D F, et al. Affecting factors of the turnover rate of steel ladle in steelmaking plants. J Univ Sci Technol Beijing, 2013, 35(8): 1072
    [41]
    蔡峻, 汪紅兵, 徐安軍, 等. 煉鋼廠鋼包紅包出鋼率的影響因素仿真. 鋼鐵研究學報, 2014, 26(1):27

    Cai J, Wang H B, Xu A J, et al. Simulation on influencing factors of rate of hot steel ladle in steelmaking plant. J Iron Steel Res, 2014, 26(1): 27
    [42]
    趙天恒, 徐安軍, 蔡峻. 煉鋼廠鋼包管理系統研究綜述. 工業加熱, 2015, 44(2):12 doi: 10.3969/j.issn.1002-1639.2015.02.004

    Zhao T H, Xu A J, Cai J. Survey on steel ladle management system. Ind Heat, 2015, 44(2): 12 doi: 10.3969/j.issn.1002-1639.2015.02.004
    [43]
    劉建. 煉鋼廠鋼包跟蹤與調度研究[學位論文]. 杭州: 杭州電子科技大學, 2009

    Liu J. Research on Ladle Tracking and Scheduling in Steelworks[Dissertation]. Hangzhou: Hangzhou Dianzi University, 2009
    [44]
    劉煒, 柴天佑. 基于規則學習的煉鋼–連鑄鋼包選配方法. 東北大學學報: 自然科學版, 2018, 39(11):1521

    Liu W, Chai T Y. Steelmaking continuous casting ladle matching method based on rule-learning. J Northeast Univ Nat Sci, 2018, 39(11): 1521
    [45]
    劉煒, 龐新福, 柴天佑. 煉鋼–精煉–連鑄脫磷鋼包調度算法研究. 控制工程, 2019, 26(4):790

    Liu W, Pang X F, Chai T Y. Research on the dephosphorization ladle scheduling algorithm of steelmaking?refining?continuous casting process. Control Eng China, 2019, 26(4): 790
    [46]
    譚園園, 魏震, 王森, 等. 基于VRPTW-AT模型的鋼包優化調度方法. 系統工程學報, 2013, 28(1):94 doi: 10.3969/j.issn.1000-5781.2013.01.013

    Tan Y Y, Wei Z, Wang S, et al. Optimization algorithm for ladle scheduling based on the VRPTW-AT model. J Syst Eng, 2013, 28(1): 94 doi: 10.3969/j.issn.1000-5781.2013.01.013
    [47]
    Tan Y Y, Cheng T C E, Ji M. A multi-objective scatter search for the ladle scheduling problem. Int J Prod Res, 2014, 52(24): 7513 doi: 10.1080/00207543.2014.939238
    [48]
    肖陽. 基于UML與Plant Simulation的鋼包周轉調度研究[學位論文]. 重慶: 重慶大學, 2012

    Xiao Y. Research on Ladle Scheduling Based on UML and Plant Simulation in Steel Plant[Dissertation]. Chongqing: Chongqing University, 2012
    [49]
    張濤. 涉及鋼包周轉的煉鋼–連鑄生產作業計劃優化方法研究[學位論文]. 重慶: 重慶大學, 2009

    Zhang T. Study on Optimical Method of Steelmaking-Continuous Casting Production Planning Involved in Ladle Turn-around[Dissertation]. Chongqing: Chongqing University, 2009
    [50]
    張媛. 考慮鋼包分配的煉鋼?連鑄調度問題研究[學位論文]. 沈陽: 沈陽工業大學, 2018

    Zhang Y. A Scatter Search Algorithm for A Steelmaking?Continuous Casting Schedule Problem with Combination of Ladle Allocation[Dissertation]. Shenyang: Shenyang University of Technology, 2018
    [51]
    蔡峻, 汪紅兵, 徐安軍, 等. 基于鋼包跟蹤的鋼水溫度在線補償系統. 冶金自動化, 2013, 37(5):37

    Cai J, Wang H B, Xu A J, et al. Molten steel temperature on-line compensation system based on steel ladle tracking. Metall Ind Autom, 2013, 37(5): 37
    [52]
    Kuyama S, Tomiyama S. A crane guidance system with scheduling optimization technology in a steel slab yard. ISIJ Int, 2016, 56(5): 820 doi: 10.2355/isijinternational.ISIJINT-2015-466
    [53]
    Maschietto G N, Ouazene Y, Ravetti M G, et al. Crane scheduling problem with non-interference constraints in a steel coil distribution centre. Int J Prod Res, 2017, 55(6): 1607 doi: 10.1080/00207543.2016.1193249
    [54]
    劉青, 田乃媛, 王英群, 等. 天車調度在優化鋼廠物流管制中的重要作用. 北京科技大學學報, 1998, 20(1):36

    Liu Q, Tian N Y, Wang Y Q, et al. Important role of crane schedule in optimizing mass flow control of steel plant. J Univ Sci Technol Beijing, 1998, 20(1): 36
    [55]
    徐樂. 基于元胞自動機的鋼廠車間天車調度仿真方法研究[學位論文]. 重慶: 重慶大學, 2007

    Xu L. Study on Simulation Method of Crane Scheduling in Workshop of Steel-making Plant Based on Cellular Automata[Dissertation]. Chongqing: Chongqing University, 2007
    [56]
    Ma C B, Zhu D F, Wang H, et al. Simulation model for crane scheduling in workshop of steel-making plant based on MAS // 2010 International Conference on Computer Application and System Modeling. Taiyuan, 2010: V5-404
    [57]
    Liu W, Sun L L, Ding J L, et al. Study on ladle schedule of steel making process using heuristic scheduling algorithm. IFAC Proc Vol, 2011, 44(1): 8211 doi: 10.3182/20110828-6-IT-1002.02306
    [58]
    Sun L L, Liu W, Chai T Y, et al. Crane scheduling of steel-making and continuous casting process using the mixed-Timed Petri net modelling via CPLEX optimization. IFAC Proc Vol, 2011, 44(1): 9482 doi: 10.3182/20110828-6-IT-1002.00170
    [59]
    Xie X, Li Y P, Zhou H B, et al. Variable neighborhood search based multi-objective dynamic crane scheduling // Proceedings of 2012 International Conference on Measurement, Information and Control. Harbin, 2012: 457
    [60]
    俞俠. 煉鋼–精煉–連鑄生產過程天車調度問題研究[學位論文]. 沈陽: 東北大學, 2012

    Yu X. Research on Crane Scheduling of Steelmaking?Refining?Continuous Casting Production Process[Dissertation]. Shenyang: Northeastern University, 2012
    [61]
    朱道飛, 王華, 王建軍, 等. 基于Petri網和UML的鋼廠天車調度系統仿真. 昆明理工大學學報: 自然科學版, 2013, 38(3):5

    Zhu D F, Wang H, Wang J J, et al. Simulation of crane scheduling systems for steel plant based on Petri Nets and UML. J Kunming Univ Sci Technol Sci Technol, 2013, 38(3): 5
    [62]
    鄭忠, 周超, 陳開. 基于免疫遺傳算法的車間天車調度仿真模型. 系統工程理論與實踐, 2013, 33(1):223 doi: 10.3969/j.issn.1000-6788.2013.01.028

    Zheng Z, Zhou C, Chen K. Crane scheduling simulation model based on immune genetic algorithms. Syst Eng —Theory Pract, 2013, 33(1): 223 doi: 10.3969/j.issn.1000-6788.2013.01.028
    [63]
    王旭, 劉士新, 王佳. 求解具有時空約束的天車調度問題Memetic算法. 東北大學學報: 自然科學版, 2014, 35(2):190

    Wang X, Liu S X, Wang J. Memetic algorithm for crane scheduling problem with spatial and temporal constraints. J Northeast Univ Nat Sci, 2014, 35(2): 190
    [64]
    姜海遠. 煉鋼–連鑄車間天車調度的仿真與優化[學位論文]. 青島: 青島理工大學, 2016

    Jiang H Y. Optimization and Simulation on Crane Scheduling of Steelmaking–Continuous Casting Production Process[Dissertation]. Qingdao: Qingdao University of Technology, 2016
    [65]
    高小強, 李盼, 龍建宇, 等. 時空約束下連鑄車間天車調度的多目標建模與求解. 系統工程理論與實踐, 2017, 37(9):2373 doi: 10.12011/1000-6788(2017)09-2373-11

    Gao X Q, Li P, Long J Y, et al. Multi-objective modelling and solving for crane scheduling with spatio-temporal constraints in casting workshop. Syst Eng —Theory Pract, 2017, 37(9): 2373 doi: 10.12011/1000-6788(2017)09-2373-11
    [66]
    Li J, Xu A J, Zang X S. Simulation-based solution for a dynamic multi-crane-scheduling problem in a steelmaking shop. Int J Prod Res, 2019. https://doi.org/10.1080/00207543.2019.1687952
    [67]
    龐新富, 劉煒, 李海波, 等. 煉鋼–連鑄生產過程運輸設備天車調度方法. 信息與控制, 2019, 48(6):745

    Pang X F, Liu W, Li H B, et al. Crane scheduling method in steelmaking?continuous casting process. Inform Control, 2019, 48(6): 745
    [68]
    Yang J P, Zhang J S, Guan M, et al. Fine description of multi-process operation behavior in steelmaking?continuous casting process by a simulation model with crane non-collision constraint. Metals, 2019, 9(10): 1078 doi: 10.3390/met9101078
    [69]
    劉青, 田乃媛, 殷瑞鈺. 煉鋼廠系統的運行原則與調控策略. 過程工程學報, 2003, 3(2):171 doi: 10.3321/j.issn:1009-606X.2003.02.015

    Liu Q, Tian N Y, Yin R Y. Operation principle and control strategy for steelmaking workshop system. Chin J Process Eng, 2003, 3(2): 171 doi: 10.3321/j.issn:1009-606X.2003.02.015
    [70]
    劉青, 黃星武, 富平原. 煉鋼廠系統生產模式優化. 北京科技大學學報, 2005, 27(6):736 doi: 10.3321/j.issn:1001-053X.2005.06.024

    Liu Q, Huang X W, Fu P Y. Production mode optimization of a steelmaking workshop system. J Univ Sci Technol Beijing, 2005, 27(6): 736 doi: 10.3321/j.issn:1001-053X.2005.06.024
    [71]
    殷瑞鈺. 冶金流程集成理論與方法. 北京: 冶金工業出版社, 2013

    Yin R Y. Theory and Methods of Metallurgical Process Integration. Beijing: Metallurgical Industry Press, 2013
    [72]
    劉青, 尹佳, 田新中, 等. 轉爐煉鋼廠工序產能和品種鋼鑄機配置. 北京科技大學學報, 2007, 29(8):845 doi: 10.3321/j.issn:1001-053x.2007.08.021

    Liu Q, Yin J, Tian X Z, et al. Matching of productive capacity among working procedures and allocating of continuous casting machines for quality steel in a converter plant. J Univ Sci Technol Beijing, 2007, 29(8): 845 doi: 10.3321/j.issn:1001-053x.2007.08.021
    [73]
    董金剛, 鄭貽裕, 蔣曉放. 寶鋼產品專線化生產實踐//2015連鑄裝備的技術創新和精細化生產技術交流會. 西安, 2015: 30

    Dong J G, Zheng Y Y, Jiang X F. Production line practice of Baosteel // Proceedings of 2015 Continuous Casting Equipment Technical Innovation and Refined Production Technology Exchange Meeting. Xi’an, 2015: 30
    [74]
    董金剛. 煉鋼生產模式比較及應用//第12屆中國鋼鐵年會. 北京, 2019: 1

    Dong J G. Comparison and application of steelmaking production patterns // Proceedings of the 12th CSM Steel Congress. Beijing, 2019: 1
    [75]
    穆衍清, 尹佳, 謝飛鳴, 等. 特殊鋼廠爐機匹配研究. 北京科技大學學報, 2013, 35(1):126

    Mu Y Q, Yin J, Xie F M, et al. Research on matching between furnaces and casters in special steel plants. J Univ Sci Technol Beijing, 2013, 35(1): 126
    [76]
    Gu Z X, Xu A J, Chang J B, et al. Optimization of the production organization pattern in Tangshan Iron and Steel Co., Ltd. J Iron Steel Res Int, 2014, 21(Suppl 1): 17
    [77]
    蘆永明, 田乃媛, 徐安軍, 等. 棒線材生產流程爐機匹配模型的建立. 冶金自動化, 2009(增刊?2): 832

    Lu Y M, Tian N Y, Xu A J, et al. Establishment of the BOF-caster matching model for the process producing rods and wires. Metall Ind Autom, 2009(Suppl 2): 832
    [78]
    蘆永明, 王鋒, 賀東風, 等. 全板帶型鋼廠爐機匹配模型的建立. 北京科技大學學報, 2009, 31(9):1189

    Lu Y M, Wang F, He D F, et al. Establishment of the BOF-caster matching model for the steelmaking plant producing plates and strips. J Univ Sci Technol Beijing, 2009, 31(9): 1189
    [79]
    陳若冰, 齊歡. 煉鋼–連鑄流程的爐機匹配. 中南大學學報: 自然科學版, 2011, 42(6):1650

    Chen R B, Qi H. Matching between converters and continuous casters. J Cent South Univ Sci Technol, 2011, 42(6): 1650
    [80]
    Liu Q, Yin J, Wang B, et al. Research on rational collocation of LF in medium and small size BOF process // AISTech 2009-Proceedings of the Iron and Steel Technology Conference. St. Louis, 2009: 995
    [81]
    鄭忠, 徐兆俊, 高小強, 等. 鋼廠生產運行模式的仿真研究//第11屆中國鋼鐵年會. 北京, 2017: 1

    Zheng Z, Xu Z J, Gao X Q, et al. Simulation-based research on the production operation mode in steel plant // Proceedings of the 11th CSM Steel Congress. Beijing, 2017: 1
    [82]
    袁帥鵬, 李鐵克, 王柏琳. 多目標煉鋼–連鑄生產調度的改進帶精英策略的快速非支配排序遺傳算法. 計算機集成制造系統, 2019, 25(1):115

    Yuan S P, Li T K, Wang B L. Improved fast elitist non-dominated sorting genetic algorithm for multi-objective steelmaking?continuous production scheduling. Comput Integr Manuf Syst, 2019, 25(1): 115
    [83]
    劉倩, 楊建平, 王柏琳, 等. 基于“爐–機對應”的煉鋼–連鑄生產調度問題遺傳優化模型. 工程科學學報, 2020, 42(5):645

    Liu Q, Yang J P, Wang B L, et al. Genetic optimization model of steelmaking?continuous casting production scheduling based on the “furnace?caster coordinating” strategy. Chin J Eng, 2020, 42(5): 645
    [84]
    劉青, 劉倩, 楊建平, 等. 煉鋼?連鑄生產調度的研究進展. 工程科學學報, 2020, 42(2):144

    Liu Q, Liu Q, Yang J P, et al. Progress of research on steelmaking–continuous casting production scheduling. Chin J Eng, 2020, 42(2): 144
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (1823) PDF downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频