Citation: | HUA Cheng-jian, WANG Min, ZHANG Meng-yun, ZHENG Rui-xuan, BAO Yan-ping. Effect of submerged entry nozzle wall surface morphologies on boundary layer structure and alumina inclusions transport[J]. Chinese Journal of Engineering, 2021, 43(7): 925-934. doi: 10.13374/j.issn2095-9389.2020.05.05.001 |
[1] |
Lee J H, Kang M H, Kim S K, et al. Influence of Al/Ti ratio in Ti? ULC steel and refractory components of submerged entry nozzle on formation of clogging deposits. ISIJ Int, 2019, 59(5): 749 doi: 10.2355/isijinternational.ISIJINT-2018-672
|
[2] |
Deng Z Y, Zhu M Y, Zhou Y L, et al. Attachment of alumina on the wall of submerged entry nozzle during continuous casting of Al-killed steel. Metall Mater Trans B, 2016, 47(3): 2015 doi: 10.1007/s11663-016-0624-y
|
[3] |
Ni P Y, Jonsson L T I, Ersson M, et al. Transport and deposition of non-metallic inclusions in steel flows- a comparison of different model predictions to pilot plant experiment data. Steel Res Int, 2017, 88(12): 1700155 doi: 10.1002/srin.201700155
|
[4] |
Lee S J, Lee S H. Flow field analysis of a turbulent boundary layer over a riblet surface. Exp Fluids, 2001, 30(2): 153 doi: 10.1007/s003480000150
|
[5] |
Walsh M, Lindemann A. Optimization and application of riblets for turbulent drag reduction // 22nd Aerospace Sciences Meeting. Reno, 1984: 1.
|
[6] |
常躍峰, 姜楠. 溝槽壁湍流多尺度相干結構實驗研究. 航空動力學報, 2008, 23(5):788
Chang Y F, Jiang N. Experimental study on coherent structure passive control and drag reduction in turbulent boundary layer with grooved surface. J Aerosp Power, 2008, 23(5): 788
|
[7] |
Minier J P, Pozorski J. Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration. Cham: Springer International Publishing, 2017.
|
[8] |
Soldati A, Marchioli C. Physics and modelling of turbulent particle deposition and entrainment: Review of a systematic study. Int J Multiphase Flow, 2009, 35(9): 827 doi: 10.1016/j.ijmultiphaseflow.2009.02.016
|
[9] |
Tehovnik F, Burja J, Arh B, et al. Submerged entry nozzle clogging during continuous casting of Al-killed steel. Metalurgija, 2015, 54(2): 371
|
[10] |
Barati H, Wu M, Kharicha A, et al. A transient model for nozzle clogging. Powder Technol, 2018, 329: 181 doi: 10.1016/j.powtec.2018.01.053
|
[11] |
楊紹瓊. 壁湍流相干結構及其溝槽被動控制的PIV實驗研究[學位論文]. 天津: 天津大學, 2015.
Yang S Q. Particle Image Velocimetry Investigation of Coherent Structures in Wall-bounded Turbulent Flows and Their Passive Control by Riblets [Dissertation]. Tianjin: Tianjin University, 2015.
|
[12] |
常躍峰, 姜楠. 溝槽壁面湍流相干結構被動控制的熱線測量. 哈爾濱工程大學學報, 2008, 29(7):705 doi: 10.3969/j.issn.1006-7043.2008.07.012
Chang Y F, Jiang N. Hot-wire measurements of passive control for coherent structure in the turbulent boundary layer of a groove-riblet surface. J Harbin Eng Univ, 2008, 29(7): 705 doi: 10.3969/j.issn.1006-7043.2008.07.012
|
[13] |
許春曉. 壁湍流相干結構和減阻控制機理研究. 力學進展, 2015, 45(1):111
Xu C X. Coherent structures and drag-reduction mechanism in wall turbulence. Adv Mech, 2015, 45(1): 111
|
[14] |
李山, 楊紹瓊, 姜楠. 溝槽面湍流邊界層減阻的TRPIV測量. 力學學報, 2013, 45(2):183 doi: 10.6052/0459-1879-12-262
Li S, Yang S Q, Jiang N. TRPIV measurement of drag-reduction in the turbulent boundary layer over riblets plate. Chin J Theoret Appl Mech, 2013, 45(2): 183 doi: 10.6052/0459-1879-12-262
|
[15] |
李山, 姜楠, 楊紹瓊. 正弦波溝槽對湍流邊界層相干結構影響的TR-PIV實驗研究. 物理學報, 2019, 68(7):188
Li S, Jiang N, Yang S Q. Influence of sinusoidal riblets on the coherent structures in turbulent boundary layer studied by time-resolved particle image velocimetry. Acta Phys Sinica, 2019, 68(7): 188
|
[16] |
Real-Ramirez C A, Carvajal-Mariscal I, Sanchez-Silva F, et al. Three-dimensional flow behavior inside the submerged entry nozzle. Metall Mater Trans B, 2018, 49(4): 1644 doi: 10.1007/s11663-018-1281-0
|
[17] |
Real C, Miranda R, Vilchis C, et al. Transient internal flow characterization of a bifurcated submerged entry nozzle. ISIJ Int, 2006, 46(8): 1183 doi: 10.2355/isijinternational.46.1183
|
[18] |
張開天, 劉建華, 崔衡, 等. 浸入式水口對結晶器鋼水流動與液面波動的影響. 工程科學學報, 2018, 40(6):697
Zhang K T, Liu J H, Cui H, et al. Effect of SEN on fluid flow and surface fluctuation in a continuous casting slab mold. Chin J Eng, 2018, 40(6): 697
|
[19] |
Fei P, Min Y, Liu C J, et al. Effect of continuous casting speed on mold surface flow and the related near-surface distribution of non-metallic inclusions. Int J Miner Metall Mater, 2019, 26(2): 186 doi: 10.1007/s12613-019-1723-y
|
[20] |
Ni P Y, Ersson M, Jonsson L T I, et al. A study on the nonmetallic inclusion motions in a swirling flow submerged entry nozzle in a new cylindrical tundish design. Metall Mater Trans B, 2018, 49(2): 723 doi: 10.1007/s11663-017-1162-y
|
[21] |
耿佃橋, 雷洪, 蘇志堅, 等. 連鑄電磁旋流水口流體流動和夾雜物行為. 北京科技大學學報, 2012, 34(5):519
Geng D Q, Lei H, Su Z J, et al. Fluid flow and inclusion behavior in the nozzle with a rotating magnetic field during continuous casting. J Univ Sci Technol Beijing, 2012, 34(5): 519
|
[22] |
王洪偉. 我所理解的流體力學. 2版. 北京: 國防工業出版社, 2019.
Wang H W. Fluid Mechanics as I Understand It. 2nd Ed. Beijing: National Defense Industry Press, 2019.
|
[23] |
Kim H T, Kline S J, Reynolds W C. The production of turbulence near a smooth wall in a turbulent boundary layer. J Fluid Mech, 1971, 50(1): 133 doi: 10.1017/S0022112071002490
|
[24] |
Yang Y, J?nsson P G, Ersson M, et al. Inclusion behavior under a swirl flow in a submerged entry nozzle and mold. Steel Res Int, 2015, 86(4): 341 doi: 10.1002/srin.201300462
|
[25] |
Salgado U D, Wei? C, Michelic S K, et al. Fluid force-induced detachment criteria for nonmetallic inclusions adhered to a refractory/molten steel interface. Metall Mater Trans B, 2018, 49(4): 1632 doi: 10.1007/s11663-018-1271-2
|