<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
LI Qing-wen, ZHENG Ming-yang, QIAO Lan, SUI Zhi-li. Transient heat transfer model of a three-dimensional spiral heat source in an energy pile[J]. Chinese Journal of Engineering, 2021, 43(11): 1569-1576. doi: 10.13374/j.issn2095-9389.2020.05.03.003
Citation: LI Qing-wen, ZHENG Ming-yang, QIAO Lan, SUI Zhi-li. Transient heat transfer model of a three-dimensional spiral heat source in an energy pile[J]. Chinese Journal of Engineering, 2021, 43(11): 1569-1576. doi: 10.13374/j.issn2095-9389.2020.05.03.003

Transient heat transfer model of a three-dimensional spiral heat source in an energy pile

doi: 10.13374/j.issn2095-9389.2020.05.03.003
More Information
  • Corresponding author: E-mail: szl803@126.com
  • Received Date: 2020-05-03
    Available Online: 2020-07-23
  • Publish Date: 2021-11-25
  • An energy pile is a new type of ground source heat pump system. A heat exchanger is casted into the concrete pile foundation of a building structure for the purpose of heating or cooling the building through heat exchange between the pile foundation and surrounding soil. An energy pile can be developed rapidly because of its high heat transfer efficiency and stable structure and because it requires no additional drilling requirements. In the long-term operation, energy piles have to bear both the overlying and thermal loads caused by changes in the temperature field. Thus, accurately evaluating the temperature field of an energy pile and its surrounding soil is one of the key problems in the design and application of energy piles. To improve the heat transfer efficiency of energy piles, U-type, W-type, spiral type, and similar types of coils have been developed to be casted into the energy pile. Results of thermal efficiency analysis show that the spiral type coil has the best heating and cooling performance and was nearly 150% more thermally efficient than the double U-type coil. Thus, a spiral coil is selected as the main coils’ form in the current practical application. However, due to the complex heat exchange structure of the spiral pipe, the present analytical model had to be simplified to accurately characterize the temperature field characteristics of a spiral pipe casted in an energy pile. In this paper, the spiral pipe was regarded as a three-dimensional spiral heat source. Considering the existing heat transfer model, an analytical solution of the temperature field was obtained by integrating green’s function and the first curve function; then, the high-precision, three-dimensional (3-D) heat transfer model of the spiral pipe was established considering the time, space, buried pipe parameters, and thermal property of host soil. In addition, a 3-D model of a spiral pipe casted in an energy pile was created in the numerical simulation software COMSOL; after simulation, the numerical solution of the temperature field was obtained. The contrastive results showed that the built 3-D spiral heat source model has high analytical accuracy. Finally, based on the analytical model, the spatial distribution and time effect of a spiral pipe casted in an energy pile were discussed.

     

  • loading
  • [1]
    程超杰. 能源樁樁身材料熱−力學特性及換熱性能研究[學位論文]. 武漢: 中國地質大學, 2016

    Cheng C J. Study on the Thermo-mechanical Properties of Concrete and Heat Transfer Behaviors of Energy Piles [Dissertation]. Wuhan: China University of Geosciences, 2016
    [2]
    張佩芳. 地源熱泵在國外的發展概況及其在我國應用前景初探. 制冷與空調, 2003, 3(3):12 doi: 10.3969/j.issn.1009-8402.2003.03.004

    Zhang P F. The general developing situation of ground-source heat pump at abroad and an initial inquisition into its application prospect to China. Refrigerat Air-condition, 2003, 3(3): 12 doi: 10.3969/j.issn.1009-8402.2003.03.004
    [3]
    Brandl H. Thermo-active ground-source structures for heating and cooling. Procedia Eng, 2013, 57: 9 doi: 10.1016/j.proeng.2013.04.005
    [4]
    Morino K, Oka T. Study on heat exchanged in soil by circulating water in a steel pile. Energy Build, 1994, 21(1): 65 doi: 10.1016/0378-7788(94)90017-5
    [5]
    Pahud D, Fromentin A, Hubbuch M. Heat exchanger pile system for heating and cooling at Zurich airport. IEA Heat Pump Centre Newsletter, 1999, 17(1): 15
    [6]
    Zhao Q, Chen B M, Liu F. Study on the thermal performance of several types of energy pile ground heat exchangers: U-shaped, W-shaped and spiral-shaped. Energy Build, 2016, 133: 335 doi: 10.1016/j.enbuild.2016.09.055
    [7]
    Hamada Y, Saitoh H, Nakamura M, et al. Field performance of an energy pile system for space heating. Energ Buildings, 2007, 39(5): 517 doi: 10.1016/j.enbuild.2006.09.006
    [8]
    Sekine K, Ooka R, Hwang S, et al. Development of a ground-source heat pump system with ground heat exchanger utilizing the cast-in-place concrete pile foundations of buildings. ASHRAE Trans, 2007, 113: 558
    [9]
    Shiba Y, Ooka R, Sekine K. Development of high-performance water-to-water heat pump for ground-source application. ASHRAE Trans, 2007, 113(2): 122
    [10]
    Omer A M. Ground-source heat pumps systems and applications. Renewable Sustainable Energy Rev, 2008, 12(2): 344 doi: 10.1016/j.rser.2006.10.003
    [11]
    Farabi-Asl H, Chapman A, Itaoka K, et al. Ground source heat pump status and supportive energy policies in Japan. Energy Procedia, 2019, 158: 3614 doi: 10.1016/j.egypro.2019.01.902
    [12]
    劉漢龍, 孔綱強, 吳宏偉. 能量樁工程應用研究進展及PCC能量樁技術開發. 巖土工程學報, 2014, 36(1):176 doi: 10.11779/CJGE201401018

    Liu H L, Kong G Q, Wu H W. Applications of energy piles and technical development of PCC energy piles. Chin J Geotech Eng, 2014, 36(1): 176 doi: 10.11779/CJGE201401018
    [13]
    Zarrella A, Carli M D, Galgaro A. Thermal performance of two types of energy foundation pile: Helical pipe and triple U-tube. Appl Therm Eng, 2013, 61(2): 301 doi: 10.1016/j.applthermaleng.2013.08.011
    [14]
    趙強. 螺旋埋管能量樁換熱器的傳熱研究[學位論文]. 濟南: 山東大學, 2018

    Zhao Q. Study on the Heat Transfer of Spiral-Tube Heat Exchangers in Energy Piles [Dissertation]. Jinan: Shandong University, 2018
    [15]
    Eskilson P, Claesson J. Simulation model for thermally interacting heat extraction boreholes. Numer Heat Transfer, 1988, 13(2): 149
    [16]
    Kavanaugh S P. Simulation and Experimental Verification of Vertical Ground-Coupled Heat Pump Systems [Dissertation]. Oklahoma: Oklahoma State University, 1985
    [17]
    刁乃仁, 方肇洪. 地埋管地源熱泵技術. 北京: 高等教育出版社, 2006

    Diao N R, Fang Z H. Ground Source Heat Pump Technology. Beijing: Higher Education Press, 2006
    [18]
    曾義和, 方肇洪. 雙U型埋管地熱換熱器的傳熱模型. 山東建筑工程學院學報, 2003, 18(1):11

    Zeng Y H, Fang Z H. A heat transfer model for double U-tube geothermal heat exchangers. J Shandong Inst Architect Eng, 2003, 18(1): 11
    [19]
    石磊, 張方方, 林蕓, 等. 樁基螺旋埋管換熱器的二維溫度場分析. 山東建筑大學學報, 2010, 25(2):177 doi: 10.3969/j.issn.1673-7644.2010.02.018

    Shi L, Zhang F F, Lin Y, et al. The 2-D thermal analysis of the coil ground heat exchanger inside piles. J Shandong Jianzhu Univ, 2010, 25(2): 177 doi: 10.3969/j.issn.1673-7644.2010.02.018
    [20]
    武丹. 樁埋管換熱器傳熱模型的研究[學位論文]. 濟南: 山東建筑大學, 2009

    Wu D. Study on Heat Transfer Model for Pile Ground Heat Exchangers [Dissertation]. Jinan: Shandong Jianzhu University, 2009
    [21]
    李新, 方亮, 趙強, 等. 螺旋埋管地熱換熱器的線圈熱源模型及其解析解. 熱能動力工程, 2011, 26(4):475

    Li X, Fang L, Zhao Q, et al. Coil heat source model and analytical solution of spirally buried tube heat exchanger. J Eng Therm Energy Power, 2011, 26(4): 475
    [22]
    Man Y, Yang H X, Diao N R, et al. Development of spiral heat source model for novel pile ground heat exchangers. HVAC&R Res, 2011, 17(6): 1075
    [23]
    楊世銘, 陶文銓. 傳熱學. 4版. 北京: 高等教育出版社, 2006

    Yang S M, Tao W Q. Heat Transfer. 4th Ed. Beijing: Higher Education Press, 2006
    [24]
    侯鎮冰, 何邵杰, 李恕先. 固體熱傳導. 上海: 上海科學技術出版社, 1984

    Hou Z B, He S J, Li S X. Solid Heat Conduction. Shanghai: Shanghai Science and Technology Press, 1984
    [25]
    鄒廣德, 沈玉鳳. 溫度場計算的一種新方法——虛設熱源法. 力學與實踐, 1993, 15(5):49

    Zou G D, Shen Y F. A new method of temperature field calculation—the virtual heat source method. Mech Pract, 1993, 15(5): 49
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (2009) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频