<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
CHEN Xue-qun, ZHANG Wan-ling, CHEN San, LIU Jian-rong, CAO Guo-liang, LI Guo-ming. Effect of oxygen on economical corrosion resistant steel[J]. Chinese Journal of Engineering, 2021, 43(7): 960-965. doi: 10.13374/j.issn2095-9389.2020.04.29.001
Citation: CHEN Xue-qun, ZHANG Wan-ling, CHEN San, LIU Jian-rong, CAO Guo-liang, LI Guo-ming. Effect of oxygen on economical corrosion resistant steel[J]. Chinese Journal of Engineering, 2021, 43(7): 960-965. doi: 10.13374/j.issn2095-9389.2020.04.29.001

Effect of oxygen on economical corrosion resistant steel

doi: 10.13374/j.issn2095-9389.2020.04.29.001
More Information
  • Corresponding author: E-mail: mimi7689@163.com
  • Received Date: 2020-04-29
    Available Online: 2021-02-01
  • Publish Date: 2021-07-01
  • Carbon steels are widely used structural materials in vessel and marine engineering. Many studies acknowledge that the pitting corrosion of these materials are heavily subject to their metallurgic factors. Although much attention has been paid on inclusions and microstructure, little had been dealt with metallurgical processing including deoxidizing degrees. Deoxidization is one of the most important processes in steelmaking. Stronger deoxidizing degree helps to improve steel’s mechanical property and welding property. However, some studies demonstrated that weaker deoxidizing degree tends to improve pitting corrosion resistance. Manufacturing ordinary structural steels nowadays have been changed from mould casting to continuous casting. However, the deoxidizing degree of continuous casting steel may be different due to different deoxidization techniques. Particularly, the oxygen content in current steels has a fairly low level, which may be harmful to pitting corrosion resistance of steels. In this study, the influence of oxygen content in carbon hull steels on corrosion and mechanical properties of steel was investigated by mechanical properties tests and alternate immersion test. Results show increased oxygen content when there is duction of deoxidization of molten steel in the range permitted by continuous casting. Interestingly, the average corrosion rate of steel slightly decreases and an obvious enhancement of resistance to pitting is observed. The average pit depth corresponding to the high oxygen side of the pit depth-oxygen curve is about 22.7% lower than that of the low oxygen side. The mechanical and cold bending properties of tested steels are able to meet technical code requirements and can reach the level of Grade D hull steel. Findings of this study suggest that solid solution oxygen in steel plays a major role in improving pitting resistance. It can enhance the thermodynamic stability of iron, elevate the corrosion potential of the iron in the pit, and reduce the pitting rate. Therefore, using oxygen as a corrosion resistant element is an economic strategy to reduce the cost of corrosion resistant steel.

     

  • loading
  • [1]
    松島巖. 低合金耐蝕鋼——開發、發展及研究. 靳裕康, 譯. 北京: 冶金工業出版社, 2004

    Matsushima I. Low-alloy Corrosion Resistant Steels—A History of Development Application and Research. Translated by Jin Y K. Beijing: Metallurgical Industry Press, 2004
    [2]
    曹楚南. 中國材料的自然環境腐蝕. 北京: 化學工業出版社, 2005

    Cao C N. Environmental Corrosion of Materials in China. Beijing: Chemical Industry Press, 2005
    [3]
    張海濤, 張建, 吳保橋, 等. 合金元素對高強耐候鋼耐大氣腐蝕行為的影響. 安徽工業大學學報, 2018, 35(3):209

    Zhang H T, Zhang J, Wu B Q, et al. Effect of alloying elements on anti-atmospheric corrosion of high strength weathering steel. J Anhui Univ Technol Nat Sci, 2018, 35(3): 209
    [4]
    Wang J S, Shi P Y, Liu C J, et al. Research and empoldering of high strength weathering steel S450EW. Adv Mater Res, 2014, 937: 125 doi: 10.4028/www.scientific.net/AMR.937.125
    [5]
    Diaz I, Cano H, Lopesino P, et al. Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments. Corros Sci, 2018, 141: 146 doi: 10.1016/j.corsci.2018.06.039
    [6]
    顧寶珊, 汪兵, 紀曉春, 等. 經濟型耐大氣腐蝕鋼大氣曝曬腐蝕性能研究. 材料保護, 2004, 37(5):39 doi: 10.3969/j.issn.1001-1560.2004.05.014

    Gu B S, Wng B, Ji X C, et al. Exposurecorrosion behavior of economical weathering steel. J Mater Prot, 2004, 37(5): 39 doi: 10.3969/j.issn.1001-1560.2004.05.014
    [7]
    Takamura A, Arakawa K, Fujiwara K, et al. Effects of alloying elements on the corrosion resistance of steel in sea-water splash zone. Corros Eng Dig, 1970, 19(7): 294 doi: 10.3323/jcorr1954.19.7_294
    [8]
    Southwell C R, Bultman J D, Alexander A L. Corrosion of metals in typical evironments-final report of 16-year exposures. Mater Perform, 1976, 15(7): 9
    [9]
    肖珩, 汪崧, 黃震中, 等. 新型耐海水腐蝕低合金鋼10CrCuSiV銹層分析研究報告. 北京科技大學學報, 1997, 19(5):476

    Xiao H, Wang S, Huang Z Z, et al. Investigation of the rust on a new kind of low alloy steel (10CrCuSiV) for resistance sea-corrosion. J Univ Sci Technol Beijing, 1997, 19(5): 476
    [10]
    Melchers R E. Effect of small compositional change on marine immersion corrosion of low alloy steels. Corros Sci, 2004, 46(7): 1669 doi: 10.1016/j.corsci.2003.10.004
    [11]
    曹國良, 李國明, 陳珊, 等. 典型耐海水腐蝕鋼中Ni和Cr耐點蝕作用的比較. 金屬學報, 2010, 46(6):748 doi: 10.3724/SP.J.1037.2010.00748

    Cao G L, Li G M, Chen S, et al. Comparison on pitting corrosion resistance of nickel and chromium in typical sea water resistance steels. Acta Metall Sin, 2010, 46(6): 748 doi: 10.3724/SP.J.1037.2010.00748
    [12]
    劉大揚, 魏開金, 李文軍, 等. 含鉻低合金鋼在海水中耐蝕性“逆轉”原因分析. 中國腐蝕與防護學報, 2003, 23(1):7 doi: 10.3969/j.issn.1005-4537.2003.01.002

    Liu D Y, Wei K J, Li W J, et al. Analysis for the reason of corrosion resistance “reversion” of containing chromium low alloy steels in seawater. J China Soc Corros Prot, 2003, 23(1): 7 doi: 10.3969/j.issn.1005-4537.2003.01.002
    [13]
    川崎博史, 佐藤秀巖. 日本発の國際標準鋼材原油タン用高耐食性厚板. Nippon Steel Mon, 2011(7):3

    Kawasaki H, Satou H. High corrosion resistant thick plate for Japanese standard crude oil Tan. Nippon Steel Mon, 2011(7): 3
    [14]
    Hao X H, Dong J H, Mu X, et al. Influence of Sn and Mo on corrosion behavior of ferrite-pearlite steel in the simulated bottom plate environment of cargo oil tank. J Mater Sci Technol, 2019, 35(5): 799 doi: 10.1016/j.jmst.2018.11.012
    [15]
    鄒中堅. 汕澳一號輪09MnNb鋼耐蝕情況的研究. 腐蝕科學與防護技術, 1990, 2(3):42

    Zou Z J. Study on the corrosion resistance of 09MnNb steel used for building SHANAO 1 ship. Corros Sci Prot Technol, 1990, 2(3): 42
    [16]
    曹國良, 李國明, 陳珊, 等. 不同脫氧程度錳鋼耐點蝕性能比較. 北京科技大學學報, 2010, 32(7):872

    Cao G L, Li G M, Chen S, et al. Comparative studies on resistance to pitting corrosion of manganese steels with different deoxidization degrees. J Univ Sci Technol Beijing, 2010, 32(7): 872
    [17]
    Cao G L, Li G M, Chen S, et al. Effects of deoxidizing degree on the pitting corrosion behavior of carbon and manganese steels. Int J Miner Metall Mater, 2011, 18(2): 169 doi: 10.1007/s12613-011-0418-9
    [18]
    Chen X Q, Chang W S, Yang S C. Sulfides’ critical active potential and pitting corrosion of mild steels//Proceedings of International Conference on Corrosion and Corrosion Control for Offshore and Marine Construction. Xiamen, 1988: 464
    [19]
    李玉榮, 朱梅五, 孔小東, 等. 中山艦船體鋼耐蝕性能檢測與分析. 材料保護, 2003, 36(10):45 doi: 10.3969/j.issn.1001-1560.2003.10.016

    Li Y R, Zhu M W, Kong X D, et al. Corrosion test for hull steel of Zhongshan vessel. Mater Prot, 2003, 36(10): 45 doi: 10.3969/j.issn.1001-1560.2003.10.016
    [20]
    托馬曉夫. 金屬腐蝕及其保護的理論. 華保定, 余柏年, 曹楚南, 等譯. 北京: 中國工業出版社, 1964

    Tomashov N D. Theory of Corrosion and Protection of Metals. Translated by Hua B D, Yu B N, Cao C N, et al. Beijing: Chinese Industry Press, 1964
    [21]
    楊熙珍, 楊武. 金屬腐蝕電化學熱力學: 電位–pH圖及其應用. 北京: 化學工業出版社, 1991

    Yang X Z, Yang W. Electrochemical Thermodynamic of Metal Corrosion: PotentialpH Diagram and its Application. Beijing: Chemical Industry Press, 1991
    [22]
    陳學群, 孔小東, 楊思誠. 硫化物夾雜對低碳鋼孔蝕擴展的影響. 中國腐蝕與防護學報, 2000, 20(2):65 doi: 10.3969/j.issn.1005-4537.2000.02.001

    Chen X Q, Kong X D, Yang S C. Effect of sulfide inclusions on propagation of pitting in carbon steels. J Chin Soc Corros Prot, 2000, 20(2): 65 doi: 10.3969/j.issn.1005-4537.2000.02.001
    [23]
    王建民, 陳學群, 常萬順, 等. 冶金因素對低合金鋼點蝕擴展過程的影響. 哈爾濱工業大學學報, 2006, 38(11):1943 doi: 10.3321/j.issn:0367-6234.2006.11.032

    Wang J M, Chen X Q, Chang W S, et al. Effect of metallurgical factors on pitting propagation process of low alloy steels. J Harbin InstTechnol, 2006, 38(11): 1943 doi: 10.3321/j.issn:0367-6234.2006.11.032
    [24]
    張文奇, 石聲泰, 肖紀美, 等. 金屬腐蝕手冊. 上海: 上海科學技術出版社, 1987

    Zhang W Q, Shi S T, Xiao J M, et al. Metal Corrosion Manual. Shanghai: Shanghai Scientific and Technical Publishers, 1987
    [25]
    王祖濱, 東濤. 低合金高強鋼. 北京: 原子能出版社, 1996

    Wang Z B, Dong T. Low Alloy High Strength Steels. Beijing: Atomic Energy Press, 1996
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article views (1944) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频