Citation: | LIU Xiao-feng, SUN Wei, SUN Yue. Semianalytical modeling of a bolted thin plate structure based on nonuniform distributions of the complex modulus of a virtual material[J]. Chinese Journal of Engineering, 2021, 43(6): 843-851. doi: 10.13374/j.issn2095-9389.2020.04.20.005 |
[1] |
Reid J D, Hiser N R. Detailed modeling of bolted joints with slippage. Finite Elem Anal Des, 2005, 41(6): 547 doi: 10.1016/j.finel.2004.10.001
|
[2] |
Sawa S, Ishimura M, Sekiguchi Y, et al. 3-D FEM stress analysis and mechanical characteristics in bolted joints under external tensile loadings//ASME 2015 International Mechanical Engineering Congress and Exposition. Houston, 2015: IMECE2015-50572, V02BT02A036
|
[3] |
Luyt P C B, Theron N J, Pietra F. Non-linear finite element modelling and analysis of the effect of gasket creep-relaxation on circular bolted flange connections. Int J Press Vessels Pip, 2017, 150: 52 doi: 10.1016/j.ijpvp.2016.12.001
|
[4] |
Zhang D C, Wang G, Huang F H, et al. Load-transferring mechanism and calculation theory along engaged threads of high-strength bolts under axial tension. J Constr Steel Res, 2020, 172: 106153 doi: 10.1016/j.jcsr.2020.106153
|
[5] |
Luan Y, Guan Z Q, Cheng G D, et al. A simplified nonlinear dynamic model for the analysis of pipe structures with bolted flange joints. J Sound Vib, 2012, 331(2): 325 doi: 10.1016/j.jsv.2011.09.002
|
[6] |
Meisami F, Moavenian M, Afsharfard A. Nonlinear behavior of single bolted flange joints: A novel analytical model. Eng Struct, 2018, 173: 908 doi: 10.1016/j.engstruct.2018.07.035
|
[7] |
Xiang J W, Zhao S W, Li D C, et al. An improved spring method for calculating the load distribution in multi-bolt composite joints. Composites Part B, 2017, 117: 1 doi: 10.1016/j.compositesb.2017.02.024
|
[8] |
Deaner B J, Allen M S, Starr M J, et al. Application of viscous and Iwan modal damping models to experimental measurements from bolted structures. J Vib Acoust, 2015, 137(2): 021012 doi: 10.1115/1.4029074
|
[9] |
李玲, 蔡安江, 阮曉光, 等. 栓接結合部剛度建模與特性分析. 振動工程學報, 2017, 30(1):1
Li L, Cai A J, Ruan X G, et al. Stiffness modeling and characteristic analysis of bolted joints. J Vib Eng, 2017, 30(1): 1
|
[10] |
孫偉, 李星占, 韓清凱. 螺栓聯接梁結構結合部非線性特性參數辨識. 振動工程學報, 2013, 26(2):185 doi: 10.3969/j.issn.1004-4523.2013.02.005
Sun W, Li X Z, Han Q K. Nonlinear joint parameter identification for bolted beam structure. J Vib Eng, 2013, 26(2): 185 doi: 10.3969/j.issn.1004-4523.2013.02.005
|
[11] |
Iranzad M, Ahmadian H. Identification of nonlinear bolted lap joint models. Comput Struct, 2012, 96-97: 1 doi: 10.1016/j.compstruc.2012.01.011
|
[12] |
Wang D, Fan X H. Nonlinear dynamic modeling for joint interfaces by combining equivalent linear mechanics with multi-objective optimization. Acta Mech Solida Sin, 2020, 33(4): 564 doi: 10.1007/s10338-019-00156-w
|
[13] |
Zha Y J, Zhang J F, Yu D W, et al. Modeling method for bolted joint interfaces based on transversely isotropic virtual materials//2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Auckland, 2018: 1118
|
[14] |
Yang Y, Cheng H, Liang B, et al. A novel virtual material layer model for predicting natural frequencies of composite bolted joints. Chin J Aeron, https://doi.org/10.1016/j.cja.2020.05.028
|
[15] |
Shi K, Zhang G P. A parameterized model of fixed joint interface based on virtual material. J Mech Sci Technol, 2019, 33(11): 5209 doi: 10.1007/s12206-019-1010-x
|
[16] |
Ye H, Huang Y M, Li P Y, et al. Virtual material parameter acquisition based on the basic characteristics of the bolt joint interfaces. Tribol Int, 2016, 95: 109 doi: 10.1016/j.triboint.2015.11.013
|
[17] |
Zhao Y S, Yang C, Cai L G, et al. Surface contact stress-based nonlinear virtual material method for dynamic analysis of bolted joint of machine tool. Precis Eng, 2016, 43: 230 doi: 10.1016/j.precisioneng.2015.08.002
|
[18] |
Shi Y M, Sol H, Hua H X. Material parameter identification of sandwich beams by an inverse method. J Sound Vib, 2006, 290(3-5): 1234 doi: 10.1016/j.jsv.2005.05.026
|
[19] |
高曄, 孫偉, 樸玉華, 等. 基于實測頻響函數反推管路卡箍支承剛度與阻尼. 航空動力學報, 2019, 34(3):664
Gao Y, Sun W, Piao Y H, et al. Inverse identification of support stiffness and damping of hoop based on measured FRF. J Aerospace Power, 2019, 34(3): 664
|
[20] |
Miller B, Ziemiański L. Optimization of dynamic behavior of thin-walled laminated cylindrical shells by genetic algorithms and deep neural networks supported by modal shape identification. Adv Eng Software, 2020, 147: 102830 doi: 10.1016/j.advengsoft.2020.102830
|
[21] |
Chisari C, Bedon C, Amadio C. Dynamic and static identification of base-isolated bridges using genetic algorithms. Eng Struct, 2015, 102: 80 doi: 10.1016/j.engstruct.2015.07.043
|
[22] |
劉倩, 楊建平, 王柏琳, 等. 基于“爐?機對應”的煉鋼?連鑄生產調度問題遺傳優化模型. 工程科學學報, 2020, 42(5):645
Liu Q, Yang J P, Wang B L, et al. Genetic optimization model of steelmaking-continuous casting production scheduling based on the “furnace-caster coordinating” strategy. Chin J Eng, 2020, 42(5): 645
|
[23] |
Papkov S O, Banerjee J R. Dynamic stiffness formulation and free vibration analysis of specially orthotropic Mindlin plates with arbitrary boundary conditions. J Sound Vib, 2019, 458: 522 doi: 10.1016/j.jsv.2019.06.028
|
[24] |
Xue J, Wang Y F, Chen L H. Nonlinear vibration of cracked rectangular Mindlin plate with in-plane preload. J Sound Vib, 2020, 481: 115437 doi: 10.1016/j.jsv.2020.115437
|
[25] |
Mahi A, Bedia E A A, Tounsi A. A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl Math Modell, 2015, 39(9): 2489 doi: 10.1016/j.apm.2014.10.045
|
[26] |
Sun W, Wang Z, Yan X F, et al. Inverse identification of the frequency-dependent mechanical parameters of viscoelastic materials based on the measured FRFs. Mech Syst Signal Process, 2018, 98: 816 doi: 10.1016/j.ymssp.2017.05.031
|