<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue S
Dec.  2020
Turn off MathJax
Article Contents
WANG Jia-xi, WANG Dong-wei, QIU Guo-xing, CAI Nan, ZHAN Dong-ping, JIANG Zhou-hua. Effect of Y2Ti2O7 nanoparticles on inclusions in CLAM steel[J]. Chinese Journal of Engineering, 2020, 42(S): 21-26. doi: 10.13374/j.issn2095-9389.2020.04.15.s07
Citation: WANG Jia-xi, WANG Dong-wei, QIU Guo-xing, CAI Nan, ZHAN Dong-ping, JIANG Zhou-hua. Effect of Y2Ti2O7 nanoparticles on inclusions in CLAM steel[J]. Chinese Journal of Engineering, 2020, 42(S): 21-26. doi: 10.13374/j.issn2095-9389.2020.04.15.s07

Effect of Y2Ti2O7 nanoparticles on inclusions in CLAM steel

doi: 10.13374/j.issn2095-9389.2020.04.15.s07
More Information
  • Corresponding author: E-mail: zhandp1906@163.com
  • Received Date: 2020-04-15
  • Publish Date: 2020-12-25
  • As the preferred material for the first wall of fusion reactors, China’s low-activation martensitic (CLAM) steel has several advantages; however, its high-temperature (>550 ℃) strength is not enough, and the helium produced by fusion can easily form a thick helium bubble and gather at the boundary, which leads to helium embrittlement; thus, the low-activation ferrite/martensite steel cannot effectively function in the fusion reactor working environment. Previous studies have shown that adding nano-sized oxide strengthening phase into CLAM steel can significantly improve the high-temperature strength and irradiation resistance of the steel, and Y2O3, Al2O3, or ThO2 are commonly used as strengthening phases. Moreover, it has been found that adding Ti will result in a better strengthening effect. In this study, CLAM steel with the addition of Y2Ti2O7 nanoparticles was fabricated using a vacuum induction furnace. Afterward, the effect of Y2Ti2O7 nanoparticles on inclusions in CLAM steel was investigated via scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and a universal testing machine experiment; then, the mechanical properties of CLAM steel were analyzed. The results show that Y2Ti2O7+Fe nanoparticles are successfully added to CLAM steel. The inclusion size of CLAM steel is 0.5?1.5 μm. The inclusion morphology is near-spherical, and the inclusion composition is Y–Ti–O–Mn–C–Ta–W–V–Cr–Fe; thus, the inclusion is characterized as a compound inclusion, mainly because Ta and V are strong carbide-forming elements and some Y2Ti2O7 particles may agglomerate. When the Y2Ti2O7 content is 0.5%, the inclusions in the steel modify into composite inclusions of rare-earth oxides, and the steel strength is 1356 MPa, while the elongation and section shrinkage are 13.44% and 63.15%, respectively. Moreover, second-phase particles also exist in the fracture dimples. The particles are spherical, less than 1 μm and have a complex composition, mainly Y–Ti–O–C–Ta–W phase.

     

  • loading
  • [1]
    Klueh R L, Ehrlich K, Abe F. Ferritic/martensitic steels: promises and problems. J Nucl Mater, 1992, 191-194: 116
    [2]
    Qiu G X, Zhan D P, Li C S, et al. Effect of Y/Zr ratio on inclusions and mechanical properties of 9Cr-RAFM steel fabricated by vacuum melting. J Mater Eng Perform, 2019, 28(2): 1067 doi: 10.1007/s11665-018-3838-0
    [3]
    Lindau R, M?slang A, Schirra M, et al. Mechanical and microstructural properties of a hipped RAFM ODS-steel. J Nucl Mater, 2002, 307-311: 769 doi: 10.1016/S0022-3115(02)01045-0
    [4]
    Tan L, Hoelzer D T, Busby J T, et al. Microstructure control for high strength 9Cr ferritic-martensitic steels. J Nucl Mater, 2012, 422(1-3): 45 doi: 10.1016/j.jnucmat.2011.12.011
    [5]
    Sch?ublin R, Ramar A, Baluc N, et al. Microstructural development under irradiation in European ODS ferritic/martensitic steels. J Nucl Mater, 2006, 351(1-3): 247 doi: 10.1016/j.jnucmat.2006.02.005
    [6]
    Qiu G X, Zhan D P, Li C S, et al. Effects of yttrium on microstructure and properties of reduced activation ferritic-martensitic steel. Mater Sci Technol, 2018, 34(16): 2018 doi: 10.1080/02670836.2018.1509462
    [7]
    Zhan D P, Qiu G X, Jiang Z H, et al. Effect of yttrium and titanium on inclusions and the mechanical properties of 9Cr RAFM steel fabricated by vacuum melting. Steel Res Int, 2017, 88(12): 1700159 doi: 10.1002/srin.201700159
    [8]
    Ratti M, Leuvrey D, Mathon M H, et al. Influence of titanium on nano-cluster (Y, Ti, O) stability in ODS ferritic materials. J Nucl Mater, 2009, 386-388: 540 doi: 10.1016/j.jnucmat.2008.12.171
    [9]
    Wang L, Guo P M, Zhao P, et al. Thermodynamic and experimental study of C–S system and C–S–Mo system. Vacuum, 2018, 152: 330 doi: 10.1016/j.vacuum.2018.03.053
    [10]
    顧超, 趙立華, 甘鵬. 超低碳鋼精煉過程中Fe–Al–Ti–O類復合氧化物夾雜的演變與控制. 工程科學學報, 2019, 41(6):757

    Gu C, Zhao L H, Gan P. Revolution and control of Fe–Al–Ti–O compound oxide inclusions in ultralow-carbon steel during refining process. Chin J Eng, 2019, 41(6): 757
    [11]
    常立忠, 高崗, 鄭福舟, 等. 稀土–鎂復合處理對GCr15軸承鋼中夾雜物的影響. 工程科學學報, 2019, 41(6):763

    Chang L Z, Gao G, Zheng F Z, et al. Effect of rare earth and magnesium complex treatment on inclusions in GCr15 bearing steel. Chin J Eng, 2019, 41(6): 763
    [12]
    蘇文文, 楊卓越, 丁雅莉. 強碳化物形成元素對鑄造高強鋼低溫性能的影響. 熱加工工藝, 2014, 43(13):41

    Su W W, Yang Z Y, Ding Y L. Effect of strong carbide forming elements on low temperature properties of casting high-strength steel. Hot Work Technol, 2014, 43(13): 41
    [13]
    郭麗娜, 賈成廠, 胡本芙, 等. 制備Y2O3彌散鐵素體合金粉末方法的研究. 粉末冶金技術, 2009, 27(5):346

    Guo L N, Jia C C, Hu B F, et al. A study on preparation of Y2O3 dispersion strengthened ferritic alloy powder. Powder Metall Technol, 2009, 27(5): 346
    [14]
    郭麗娜, 胡本芙, 劉安強, 等. 氧化物彌散強化鋼的強化機理. 北京科技大學學報, 2013, 35(5):586

    Guo L N, Hu B F, Liu A Q, et al. Strengthening mechanism of oxide dispersion strengthened steel. J Univ Sci Technol Beijing, 2013, 35(5): 586
    [15]
    余鵬飛, 胡錢錢, 夏培康, 等. Fe15Mn0.8C–Al–Si熱軋輕質高強鋼的組織與性能. 上海金屬, 2017, 39(1):33 doi: 10.3969/j.issn.1001-7208.2017.01.007

    Yu P F, Hu Q Q, Xia P K, et al. Microstructure and mechanical properties of hot rolled Fe15Mn0.8C–Al–Si light-weight high strength steel. Shanghai Met, 2017, 39(1): 33 doi: 10.3969/j.issn.1001-7208.2017.01.007
    [16]
    崔辰碩, 高彩茹, 蘇冠僑, 等. 熱軋低碳釩鋼強韌化機制的研究. 東北大學學報: 自然科學版, 2017, 38(3):341

    Cui C S, Gao C R, Su G Q, et al. Strengthening and toughening mechanism of hot-rolled low carbon vanadium steel. J Northeast Univ Nat Sci, 2017, 38(3): 341
    [17]
    Zhang Z B, Urbassek H M. Indentation into an Al/Si composite: enhanced dislocation mobility at interface. J Mater Sci, 2018, 53(1): 799 doi: 10.1007/s10853-017-1495-6
    [18]
    李飛, 張華煜, 何文武, 等. Mn18Cr18N奧氏體不銹鋼的壓縮拉伸連續加載變形行為. 金屬學報, 2016, 52(8):956

    Li F, Zhang H Y, He W W, et al. Compression and tensile consecutive deformation behavior of Mn18Cr18N austenite stainless steel. Acta Metall Sin, 2016, 52(8): 956
    [19]
    李紅英. 金屬拉伸試樣的斷口分析. 山西大同大學學報: 自然科學版, 2011, 27(1):76

    Li H Y. Fracture analysis of the metal tensile specimen. J Shanxi Datong Univ Nat Sci Ed, 2011, 27(1): 76
    [20]
    南竹, 張國賞. 第二相粒子增強鋼鐵材料的研究進展. 鑄造技術, 2018, 39(7):1633

    Nan Z, Zhang G S. Research progress on second phase particle reinforced steel and iron materials. Foundry Technol, 2018, 39(7): 1633
    [21]
    張欣, 蘇孺. 2024鋁合金的高溫拉伸性能. 金屬熱處理, 2019, 44(4):156

    Zhang X, Su R. High temperature tensile properties of 2024 aluminum alloy. Heat Treat Met, 2019, 44(4): 156
    [22]
    馬李, 何錄菊, 莫才頌, 等. 熱處理態Ni–Cr–Al合金的拉伸性能及微觀變形機理. 金屬熱處理, 2019, 44(5):47

    Ma L, He L J, Mo C S, et al. Tensile properties and microscopic deformation mechanism of heat-treated Ni–Cr–Al alloy. Heat Treat Met, 2019, 44(5): 47
    [23]
    張建斌, 劉帆, 薛飛. 熱處理工藝對P91耐熱鋼中δ-鐵素體和沖擊性能的影響. 材料導報, 2018, 32(4):1318

    Zhang J B, Liu F, Xue F. Effect of heat treatment on δ-ferrite and impact toughness of P91 heat-resistant steel. Mater Rev, 2018, 32(4): 1318
    [24]
    Tang L T, Zhu D G, Sun Z, et al. Microstructure and mechanical properties of Al–Ti–Zr intermetallic compounds prepared by vacuum hot pressing. Vacuum, 2018, 150: 166 doi: 10.1016/j.vacuum.2018.01.033
    [25]
    劉麗玉, 高翔宇, 楊憲鋒, 等. DD6單晶高溫合金振動疲勞性能及斷裂機理. 材料工程, 2018, 46(2):128 doi: 10.11868/j.issn.1001-4381.2016.000891

    Liu L Y, Gao X Y, Yang X F, et al. Vibration fatigue properties and fracture mechanism of DD6 single crystal superalloy. J Mater Eng, 2018, 46(2): 128 doi: 10.11868/j.issn.1001-4381.2016.000891
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (1007) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频