Citation: | WANG Ju-jin, ZHANG Li-feng, CHEN Wei, WANG Sheng-dong, ZHANG Yue-xin, REN Ying. Kinetic model of the composition transformation of slag inclusions in molten steel in continuous casting mold[J]. Chinese Journal of Engineering, 2021, 43(6): 786-796. doi: 10.13374/j.issn2095-9389.2020.04.13.003 |
[1] |
張立峰. 鋼中非金屬夾雜物. 北京: 冶金工業出版社, 2019
Zhang L F. Non-Metallic Inclusions in Steels: Fundamentals. Beijing: Metallurgical Industry Press, 2019
|
[2] |
張立峰. 鋼中非金屬夾雜物: 工業實踐. 北京: 冶金工業出版社, 2019
Zhang L F. Non-Metallic Inclusions in Steels: Industrial Practice. Beijing: Metallurgical Industry Press, 2019
|
[3] |
姜亞飛. 連鑄板坯軋制中板的表面缺陷. 鋼鐵, 1998, 33(8):29
Jiang Y F. Analysis of surface defects of medium plate rolled from continuous casting slab. Iron Steel, 1998, 33(8): 29
|
[4] |
Yu H X, Deng X X, Wang X H, et al. Characteristics of subsurface inclusions in deep-drawing steel slabs at high casting speed. Metall Res Technol, 2015, 112(6): 608 doi: 10.1051/metal/2015043
|
[5] |
Lan Y, Wang Y F, Yang Z Z, et al. Analyzing and control of surface inclusion defect of hot-rolled coil. Adv Mater Res, 2013, 753-755: 230 doi: 10.4028/www.scientific.net/AMR.753-755.230
|
[6] |
高曉杰, 李京社, 楊樹峰, 等. SPHC板卷表面缺陷來源示蹤研究. 河南冶金, 2014, 22(3):14 doi: 10.3969/j.issn.1006-3129.2014.03.004
Gao X J, Li J S, Yang S F, et al. Application of tracers to investigate source of slag inclusions in surface defects of SPHC steel. Henan Metall, 2014, 22(3): 14 doi: 10.3969/j.issn.1006-3129.2014.03.004
|
[7] |
Jiang C H, Tang D, Zhang C, et al. Morphology and metallurgical factors of line defects on surface of cold rolled 304 austenitic stainless steel sheet. Mater Res Innovations, 2014, 18(Suppl 4): S4-281
|
[8] |
Yotsuji J, Koshihara T. Detection system for inclusion defects in hot-rolled steel plates using MFLT with two different magnetizing strengths. AIP Conf Proc, 2014, 1581: 1315
|
[9] |
Liu S T, Hu J H, Xu Z Q, et al. Analysis on inclusion defects for titanium containing austenitic steel and related manufacturing way // The 8th Pacific Rim International Congress on Advanced Materials and Processing. Waikoloa, 2013: 2205
|
[10] |
Kusano A, Sato N, Okimori M. Formation mechanism of a white spot defect on the tin plate steel produced by continuous cast slab. Tetsu-To-Hagane, 2000, 86(5): 315 doi: 10.2355/tetsutohagane1955.86.5_315
|
[11] |
Zhang L F. Nucleation, growth, transport, and entrapment of inclusions during steel casting. JOM, 2013, 65(9): 1138 doi: 10.1007/s11837-013-0688-y
|
[12] |
Wang S D, Chen W, Zhang X B, et al. Influence of fc-mold on flow pattern and entrapment of inclusions in continuous casting strand. // ICS2018-7th International Congress on Science and Technology of Steelmaking. Venice, 2018
|
[13] |
Wang S D, Zhang L F, Wang Q Q, et al. Effect of electromagnetic parameters on the motion and entrapment of inclusions in FC-Mold continuous casting strands. Metall Res Technol, 2016, 113(2): 205 doi: 10.1051/metal/2016003
|
[14] |
Chen W, Ren Y, Zhang L F. Large eddy simulation on the fluid flow, solidification and entrapment of inclusions in the steel along the full continuous casting slab strand. JOM, 2018, 70(12): 2968 doi: 10.1007/s11837-018-3118-3
|
[15] |
Yamashita S, Iguchi M. Mechanism of mold powder entrapment caused by large argon bubble in continuous casting mold. ISIJ Int, 2001, 41(12): 1529 doi: 10.2355/isijinternational.41.1529
|
[16] |
姜平國, 賴朝斌. 寬板坯連鑄結晶器流場的數值模擬. 工程科學學報, 2016, 38(增刊1): 50
Jiang P G, Lai C B. Numerical simulation of the flow field in a wide slab continuous casting mold. Chin J Eng, 2016, 38(Suppl 1): 50
|
[17] |
吳華杰, 張漓, 徐陽, 等. 基于PIV技術的鋼包臨界卷渣行為水模型研究. 工程科學學報, 2016, 38(5):637
Wu H J, Zhang L, Xu Y, et al. Water model study on critical slag entrapment behavior based on PIV technology. Chin J Eng, 2016, 38(5): 637
|
[18] |
Ohguchi S, Robertson D G C, Deo B, et al. Simultaneous dephosphorization and desulphurization of molten pig iron. Ironmaking Steelmaking, 1984, 11(4): 202
|
[19] |
Harada A, Maruoka N, Shibata H, et al. A kinetic model to predict the compositions of metal, slag and inclusions during ladle refining: Part 1. basic concept and application. ISIJ Int, 2013, 53(12): 2110 doi: 10.2355/isijinternational.53.2110
|
[20] |
Harada A, Maruoka N, Shibata H, et al. A kinetic model to predict the compositions of metal, slag and inclusions during ladle refining: Part 2. condition to control the inclusion composition. ISIJ Int, 2013, 53(12): 2118 doi: 10.2355/isijinternational.53.2118
|
[21] |
Zhang Y, Ren Y, Zhang L F. Kinetic study on compositional variations of inclusions, steel and slag during refining process. Metall Res Technol, 2018, 115(4): 415 doi: 10.1051/metal/2018059
|
[22] |
張瑩. “鋼–渣–夾雜物–耐火材料–合金–空氣”六相多元體系下的鋼、渣和夾雜物成分變化的動力學研究[學位論文]. 北京: 北京科技大學, 2019
Zhang Y. Kinetic Study on Composiitoal Variations of Steel, Slag and Incluisons in a Multiphase System of “Steel-Slag -Incluison-Refractory-Alloy-Air”[Dissertation]. Beijing: University of Science and Technology Beijing, 2019
|
[23] |
Zhang J. Coexistence theory of slag structure and its application to calculation of oxidizing capability of slag melts. J Iron Steel Res, 2003, 10(1): 1
|
[24] |
李松, 鄭雪梅, 馬愛元, 等. CaO–SiO2–Al2O3–TiO2渣系活度計算模型的建立及應用. 稀有金屬, 2020, 44(5):540
Li S, Zheng X M, Ma A Y, et al. Construction and application of activity models for CaO?SiO2?Al2O3?TiO2 slag system. Chin J Rare Met, 2020, 44(5): 540
|
[25] |
Ren Y, Zhang L F, Pistorius P C. Transformation of oxide inclusions in Type 304 Stainless Steels during heat treatment. Metall Mater Trans B, 2017, 48(5): 2281 doi: 10.1007/s11663-017-1007-8
|
[26] |
Yang W, Guo C B, Zhang L F, et al. Evolution of oxide inclusions in Si?Mn killed steels during hot-rolling process. Metall Mater Trans B, 2017, 48(5): 2717 doi: 10.1007/s11663-017-1025-6
|
[27] |
Cheng G, Li W F, Zhang X G, et al. Transformation of inclusions in solid GCr15 bearing steels during heat treatment. Metals, 2019, 9(6): 642 doi: 10.3390/met9060642
|
[28] |
Chu Y P, Li W F, Ren Y, et al. Transformation of inclusions in linepipe steels during heat treatment. Metall Mater Trans B, 2019, 50(4): 2047 doi: 10.1007/s11663-019-01593-1
|
[29] |
Wang J J, Li W F, Ren Y, et al. Thermodynamic and kinetic analysis for transformation of oxide inclusions in solid 304 stainless steels. Steel Res Int, 2019, 90(7): 1800600 doi: 10.1002/srin.201800600
|