<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue S
Dec.  2020
Turn off MathJax
Article Contents
YAO Cong-lin, ZHU Hong-chun, JIANG Zhou-hua, PAN Tao. Numerical simulation of a long arc plasma in an electric arc furnace[J]. Chinese Journal of Engineering, 2020, 42(S): 60-67. doi: 10.13374/j.issn2095-9389.2020.04.08.s04
Citation: YAO Cong-lin, ZHU Hong-chun, JIANG Zhou-hua, PAN Tao. Numerical simulation of a long arc plasma in an electric arc furnace[J]. Chinese Journal of Engineering, 2020, 42(S): 60-67. doi: 10.13374/j.issn2095-9389.2020.04.08.s04

Numerical simulation of a long arc plasma in an electric arc furnace

doi: 10.13374/j.issn2095-9389.2020.04.08.s04
More Information
  • The continuous scrap electric arc furnace adopts a long arc operation for a longer arc length and a larger discharge power. Although the long arc differs from the traditional welding short arc, few reports on long arc simulation research in the field of the electric arc furnace are available. As the main energy source in the electric arc furnace, the long arc is very important for the melting of scrap and heating of molten steel. Due to the complicated physical phenomena in the electric arc furnace, it is difficult to accurately obtain the distribution of various physical fields in the furnace. Therefore, numerical simulation is a frequently used method for studying the arc plasma in the electric arc furnace. In this paper, the magnetohydrodynamic method of the magnetic vector potential was used to establish the numerical model of an arc. Based on this numerical model, the electromagnetic field, temperature field, and flow field were coupled and solved. The effects of current and arc length on the temperature distribution, velocity distribution, arc force, and shear stress of the arc in the electric arc furnace were studied. The results show that the arc plasma in the electric arc furnace is distributed in a long bell shape, and the arc column is slender. As the current increases, the effective arc action range increases, and the arc pressure and shear stress on the anode surface increase. As the arc length increases, the effective arc action range decreases, and the arc pressure and shear stress on the anode surface decrease. The short arc operation has a strong effect on the molten pool, and the long arc operation is relatively stable. A reasonable control of the current and arc length effectively improves the thermal efficiency of the arc.

     

  • loading
  • [1]
    Teng L D, Meador M, Ljungqvist P. Application of new generation electromagnetic stirring in electric arc furnace. Steel Res Int, 2017, 88(4): 1600202 doi: 10.1002/srin.201600202
    [2]
    Hay T, Echterhof T, Visuri V V. Development of an electric arc furnace simulator based on a comprehensive dynamic process model. Processes, 2019, 7(11): 852 doi: 10.3390/pr7110852
    [3]
    何孝文. 煉鋼短流程工藝國內外現狀及發展趨勢. 工程技術, 2016(67):268

    He X W. Current status and development trend of EAF steelmaking process at home and abroad. Eng Technol, 2016(67): 268
    [4]
    朱榮, 魏光升, 董凱. 電弧爐煉鋼綠色及智能化技術進展//第十一屆中國鋼鐵年會論文集. 北京, 2017: 1

    Zhu R, Wei G S, Dong K. Development of green and intelligent technologies in electric arc furnace steelmaking processes//Proceedings of the 11th China Iron and Steel Annual Conference. Beijing, 2017: 1
    [5]
    朱榮, 魏光升, 唐天平. 電弧爐煉鋼流程潔凈化冶煉技術. 煉鋼, 2018, 34(1):10

    Zhu R, Wei G S, Tang T P. Technologies of purification production in electric arc furnace steelmaking processes. Steelmaking, 2018, 34(1): 10
    [6]
    Kukharev A, Bilousov V, Bilousov E, et al. The peculiarities of convective heat transfer in melt of a multiple-electrode arc furnace. Metals, 2019, 9(11): 1174 doi: 10.3390/met9111174
    [7]
    Odenthal H J, Kemminger A, Krause F, et al. Review on modeling and simulation of the electric arc furnace (EAF). Steel Res Int, 2018, 89(1): 1700098 doi: 10.1002/srin.201700098
    [8]
    Fathi A, Saboohi Y, ?krjanc I, et al. Low computational-complexity model of EAF arc-heat distribution. ISIJ Int, 2015, 55(7): 1353 doi: 10.2355/isijinternational.55.1353
    [9]
    過增元, 趙文華. 電弧和熱等離子體. 北京: 科學出版社, 1986

    Guo Z Y, Zhao W H. Arc and Thermal Plasma. Beijing: Science Press, 1986
    [10]
    宋琛. 直流電弧等離子體噴涂Al2O3的數值模擬與實驗驗證[學位論文]. 長沙: 中南大學, 2014

    Song C. Numerical Simulation and Experimental Verification of DC Arc Plasma Sprayed Alumina[Dissertation]. Changsha: Central South University, 2014
    [11]
    Pan J J, Hu S S, Yang L J, et al. Numerical analysis of the heat transfer and material flow during keyhole plasma arc welding using a fully coupled tungsten–plasma–anode model. Acta Mater, 2016, 118: 221 doi: 10.1016/j.actamat.2016.07.046
    [12]
    Pan J J, Hu S S, Yang L J, et al. Simulation and analysis of heat transfer and fluid flow characteristics of variable polarity GTAW process based on a tungsten–arc-specimen coupled model. Int J Heat Mass Transfer, 2016, 96: 346 doi: 10.1016/j.ijheatmasstransfer.2016.01.014
    [13]
    周前紅. 直流電弧等離子體炬的數值模擬[學位論文]. 上海: 復旦大學, 2009

    Zhou Q H. Numerical Simulation of DC Arc Plasma Torch[Dissertation]. Shanghai: Fudan University, 2009
    [14]
    Hsu K C, Etemadi K, Pfender E. Study of the free-burning high-intensity argon arc. J Appl Phys, 1983, 54(3): 1293 doi: 10.1063/1.332195
    [15]
    Lowke J J, Kovitya P, Schmidt H P. Theory of free-burning arc columns including the influence of the cathode. J Phys D Appl Phys, 2000, 25(11): 1600
    [16]
    樊丁, 陳劍虹, 牛尾誠夫. TIG電弧傳熱傳質過程的數值分析. 機械工程學報, 1998, 34(2):39 doi: 10.3321/j.issn:0577-6686.1998.02.007

    Fan D, Chen J H, Ushio M. Numerical analysis of the heat and mass transfer process in TIG arc. Chin J Mech Eng, 1998, 34(2): 39 doi: 10.3321/j.issn:0577-6686.1998.02.007
    [17]
    蘆鳳桂, 姚舜, 錢偉方. 鎢極氬弧焊焊接電弧數值分析. 上海交通大學學報, 2003, 37(12):1862 doi: 10.3321/j.issn:1006-2467.2003.12.012

    Lu F G, Yao S, Qian W F. Numerical analysis on tungsten inert gas welding arc. J Shanghai Jiaotong Univ, 2003, 37(12): 1862 doi: 10.3321/j.issn:1006-2467.2003.12.012
    [18]
    蘆鳳桂. TIG焊接電弧與熔池動態交互作用三維數值模擬[學位論文]. 上海: 上海交通大學, 2004

    Lu F G. 3D Numerical Simulation onDynamic Interaction between TIG Welding Arc and Weld Pool[Dissertation]. Shanghai: Shanghai Jiaotong University, 2004
    [19]
    Li L M, Li B K, Liu L C, et al. Numerical modeling of fluid flow, heat transfer and arc–melt interaction in tungsten inert gas welding. High Temp Mater Processes, 2017, 36(4): 427 doi: 10.1515/htmp-2016-0120
    [20]
    Wang X X, Huang J K, Huang Y, et al. Investigation of heat transfer and fluid flow in activating TIG welding by numerical modeling. Appl Therm Eng, 2017, 113: 27 doi: 10.1016/j.applthermaleng.2016.11.008
    [21]
    Hsu K C, Pfender E. Two-temperature modeling of the free-burning, high-intensity arc. J Appl Phys, 1983, 54(8): 4359 doi: 10.1063/1.332672
    [22]
    Capitelli M, Colonna G, Gorse C, et al. Transport properties of high temperature air in local thermodynamic equilibrium. Eur Phys J D, 2000, 11(2): 279 doi: 10.1007/s100530070094
    [23]
    朱應波, 宋東亮, 曾昭生, 等. 直流電弧爐煉鋼技術. 北京: 冶金工業出版社, 1997

    Zhu Y B, Song D L, Zeng Z S, et al. DC Electric Arc Furnace Steelmaking Technology. Beijing: Metallurgical Industry Press, 1997
    [24]
    Wang F, Jin Z, Zhu Z. Numerical study of dc arc plasma and molten bath in dc electric arc furnace. Ironmaking Steelmaking, 2006, 33(1): 39 doi: 10.1179/174328105X71326
    [25]
    Morris J C, Bach G R, Krey R U, et al. Continuum radiated power for high-temperature air and its components. AIAA J, 1966, 4(7): 1223 doi: 10.2514/3.3652
    [26]
    王豐華, 金之儉, 朱子述. 直流電弧爐電弧等離子體射流的數值模擬. 高壓電器, 2005, 41(4):241 doi: 10.3969/j.issn.1001-1609.2005.04.001

    Wang F H, Jin Z J, Zhu Z S. Numerical simulation of plasma in DC electric arc furnace. High Vol Apparatus, 2005, 41(4): 241 doi: 10.3969/j.issn.1001-1609.2005.04.001
    [27]
    王豐華. 電弧爐建模研究及其應用[學位論文]. 上海: 上海交通大學, 2006

    Wang F H. Study of Modeling the Electric Arc Furnace and Its Application[Dissertation]. Shanghai: Shanghai Jiaotong University, 2006
    [28]
    Bowman B. Measurements of plasma velocity distributions in free-burning DC arcs up to 2160 A. J Phys D Appl Phys, 1972, 5(8): 1422 doi: 10.1088/0022-3727/5/8/309
    [29]
    齊景偉, 胡明, 邵哲如, 等. 三維長電弧磁流體動力學數值模擬. 工業加熱, 2018, 47(6):38 doi: 10.3969/j.issn.1002-1639.2018.06.011

    Qi J W, Hu M, Shao Z R, et al. Numerical simulation of three-dimensional long arc magneto-hydrodynamic. Ind Heat, 2018, 47(6): 38 doi: 10.3969/j.issn.1002-1639.2018.06.011
    [30]
    Choo R T C, Szekely J, Westhoff R C. Modeling of high-current arcs with emphasis on free surface phenomena in the weld pool. Weld J, 1990, 69(9): 346
    [31]
    仝永博, 劉征, 羅玉鐲, 等. 采用長弧操作的高阻抗電弧爐. 冶金設備, 2014(6):20 doi: 10.3969/j.issn.1001-1269.2014.06.005

    Tong Y B, Liu Z, Luo Y Z, et al. High impedance EAF of long arc operation. Metall Equip, 2014(6): 20 doi: 10.3969/j.issn.1001-1269.2014.06.005
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (2027) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频