Citation: | WANG Hao, BAO Yan-ping, ZHI Jian-guo, GAO Shuai, WANG Min, SHI Chao. Effect of rare earth Ce on MnS inclusions in high strength IF steel containing phosphorus during a continuous casting and rolling process[J]. Chinese Journal of Engineering, 2020, 42(S): 1-8. doi: 10.13374/j.issn2095-9389.2020.04.06.s11 |
[1] |
王暢, 于洋, 劉珂, 等. 含磷高強IF鋼熱軋軋裂的形成原因及控制. 中國冶金, 2016, 26(1):17
Wang C, Yu Y, Liu K, et al. Forming reason and control of strip fracture in high strength IF steel containing phosphorus during hot-rolling process. China Metall, 2016, 26(1): 17
|
[2] |
熊道禮, 毛衛民. 含磷高強IF鋼中FeTiP相的脫溶及硬化現象. 北京科技大學學報, 2000, 22(4):350 doi: 10.3321/j.issn:1001-053X.2000.04.017
Xiong D L, Mao W M. Precipitation hardening of FeTiP phase in P-added high strength IF steel. J Univ Sci Technol Beijing, 2000, 22(4): 350 doi: 10.3321/j.issn:1001-053X.2000.04.017
|
[3] |
Wang M, Bao Y P, Yang Q, et al. Coordinated control of carbon and oxygen for ultra-low-carbon interstitial-free steel in a smelting process. Int J Miner Metall Mater, 2015, 22(12): 1252 doi: 10.1007/s12613-015-1192-x
|
[4] |
Li Y H, Bao Y P, Wang R, et al. Modeling study on the flow patterns of gas-liquid flow for fast decarburization during the RH process. Int J Miner Metall Mater, 2018, 25(2): 153 doi: 10.1007/s12613-018-1558-y
|
[5] |
Guo J L, Bao Y P, Wang M. Cleanliness of Ti-bearing Al-killed ultra-low-carbon steel during different heating processes. Int J Miner Metall Mater, 2017, 24(12): 1370 doi: 10.1007/s12613-017-1529-8
|
[6] |
Li X, Bao Y P, Wang M, et al. Simulation study on factors influencing the entrainment behavior of liquid steel as bubbles pass through the steel/slag interface. Int J Miner Metall Mater, 2016, 23(5): 511 doi: 10.1007/s12613-016-1262-8
|
[7] |
Wang R, Bao Y P, Li Y H, et al. Influence of metallurgical processing parameters on defects in cold-rolled steel sheet caused by inclusions. Int J Miner Metall Mater, 2019, 26(4): 440 doi: 10.1007/s12613-019-1751-7
|
[8] |
Wang R, Bao Y P, Yan Z J, et al. Comparison between the surface defects caused by Al2O3 and TiN inclusions in interstitial-free steel auto sheets. Int J Miner Metall Mater, 2019, 26(2): 178 doi: 10.1007/s12613-019-1722-z
|
[9] |
Tavares S S M, Pardal J M, Martins T R B, et al. Influence of sulfur content on the corrosion resistance of 17-4PH stainless steel. J Mater Eng Perform, 2017, 26(6): 2512 doi: 10.1007/s11665-017-2693-8
|
[10] |
Shi W N, Yang S F, Dong A P, et al. Understanding the corrosion mechanism of spring steel induced by MnS inclusions with different sizes. JOM, 2018, 70(11): 2513 doi: 10.1007/s11837-018-3026-6
|
[11] |
Liu X G, Wang C, Deng Q F, et al. High-temperature fracture behavior of MnS inclusions based on GTN model. J Iron Steel Res Int, 2019, 26(9): 941 doi: 10.1007/s42243-018-0202-4
|
[12] |
潘曉倩, 楊健, 職建軍, 等. 超低碳汽車外板BH鋼煉鋼過程中夾雜物的演變. 鋼鐵, 2019, 54(8):48
Pan X Q, Yang J, Zhi J J, et al. Evolution of inclusions in steelmaking process for ultra low carbon BH auto exposed panel. Iron Steel, 2019, 54(8): 48
|
[13] |
黃宇, 成國光, 謝有. 稀土Ce對釬具鋼中夾雜物的改質機理研究. 金屬學報, 2018, 54(9):1253 doi: 10.11900/0412.1961.2018.00079
Huang Y, Cheng G G, Xie Y. Modification mechanism of cerium on the inclusions in drill steel. Acta Metall Sin, 2018, 54(9): 1253 doi: 10.11900/0412.1961.2018.00079
|
[14] |
Gao S, Wang M, Guo J L, et al. Characterization transformation of inclusions using rare earth Ce treatment on Al-killed titanium alloyed interstitial free steel. Steel Res Int, 2019, 90(10): 1900194 doi: 10.1002/srin.201900194
|
[15] |
Hu D L, Liu H, Xie J B, et al. Analysis of precipitation behavior of MnS in sulfur-bearing steel system with finite-difference segregation model. J Iron Steel Res Int, 2018, 25(8): 803 doi: 10.1007/s42243-018-0117-0
|
[16] |
陳士富, 劉學, 雷洪, 等. 錳鋼凝固過程中MnS夾雜物析出行為. 遼寧科技大學學報, 2017, 40(4):241
Chen S F, Liu X, Lei H, et al. Precipitation behavior of MnS inclusions during solidification of manganese steel. J Univ Sci Technol Liaoning, 2017, 40(4): 241
|
[17] |
鄭萬, 齊盼盼, 沈星, 等. 低碳低硫鋼中MnS析出行為分析. 武漢科技大學學報:自然科學版, 2016, 39(4):241
Zheng W, Qi P P, Shen X, et al. Precipitation behavior of MnS in low-carbon low-sulfur steel. J Wuhan Univ Sci Technol, 2016, 39(4): 241
|
[18] |
Goto H, Miyazawa K I, Yamaguchi K I, et al. Effect of cooling rate on oxide precipitation during solidification of low carbon steels. ISIJ Int, 1994, 34(5): 414 doi: 10.2355/isijinternational.34.414
|
[19] |
Chen Y L, Wang Y, Zhao A M. Precipitation of AIN and MnS in low carbon aluminium-killed steel. J Iron Steel Res Int, 2012, 19(4): 51 doi: 10.1016/S1006-706X(12)60087-9
|
[20] |
Wang H, Bao Y P, Zhao M, et al. Effect of Ce on the cleanliness, microstructure and mechanical properties of high strength low alloy steel Q690E in industrial production process. Int J Miner Metall Mater, 2019, 26(11): 1372 doi: 10.1007/s12613-019-1871-0
|
[21] |
Li M L, Wang F M, Li C R, et al. Effects of cooling rate and Al on MnS formation in medium-carbon non-quenched and tempered steels. Int J Miner Metall Mater, 2015, 22(6): 589 doi: 10.1007/s12613-015-1111-1
|
[22] |
Yan J C, Li T, Shang Z Q, et al. Three-dimensional characterization of MnS inclusions in steel during rolling process. Mater Charact, 2019, 158: 109944 doi: 10.1016/j.matchar.2019.109944
|
[23] |
Liu Y Q, Wang L J, Chou K C. Effect of cerium on the cleanliness of spring steel used in fastener of high-speed railway. J Rare Earths, 2014, 32(8): 759 doi: 10.1016/S1002-0721(14)60137-X
|
[24] |
程昌學, 楊湘杰, 何毅, 等. Ce對A356合金的影響及細化機制的研究. 稀有金屬, 2018, 42(11):1127
Cheng C X, Yang X J, He Y, et al. The effect of Ce on A356 alloy and the study of its refining mechanism. Chin J Rare Met, 2018, 42(11): 1127
|
[25] |
周宇, 劉偉東, 閻杰, 等. 稀土元素對MnS夾雜物變形能力影響的價電子理論分析. 稀有金屬, 2006, 30(2):185 doi: 10.3969/j.issn.0258-7076.2006.02.014
Zhou Y, Liu W D, Yan J, et al. Valence electron theoretical interpretation on effect of rare-earth on antideformability of MnS. Chin J Rare Met, 2006, 30(2): 185 doi: 10.3969/j.issn.0258-7076.2006.02.014
|