Citation: | XU Long-yun, YANG Jian, WANG Rui-zhi. Influence of inclusions with Mg deoxidation on the microstructure in the heat-affected zone of steel plates after high-heat-input welding[J]. Chinese Journal of Engineering, 2020, 42(S): 9-13. doi: 10.13374/j.issn2095-9389.2020.04.05.s10 |
[1] |
Pervushin G V, Suito H. Effect of primary deoxidation products of Al2O3, ZrO2, Ce2O3 and MgO on TiN precipitation in Fe?10mass%Ni alloy. ISIJ Int, 2001, 41(7): 748 doi: 10.2355/isijinternational.41.748
|
[2] |
Kimura S, Nakajima K, Mizoguchi S. Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels. Metall Mater Trans B, 2001, 32(1): 79 doi: 10.1007/s11663-001-0010-1
|
[3] |
Park S C, Jung I H, Oh K S, et al. Effect of Al on the evolution of non-metallic inclusions in the Mn?Si?Ti?Mg deoxidized steel during solidification: Experiments and thermodynamic calculations. ISIJ Int, 2004, 44(6): 1016 doi: 10.2355/isijinternational.44.1016
|
[4] |
Ohta H, Suito H. Characteristics of particle size distribution of deoxidation products with Mg, Zr, Al, Ca, Si/Mn and Mg/Al in Fe?10mass%Ni alloy. ISIJ Int, 2006, 46(1): 14 doi: 10.2355/isijinternational.46.14
|
[5] |
Ohta H, Suito H. Effects of dissolved oxygen and size distribution on particle coarsening of deoxidation product. ISIJ Int, 2006, 46(1): 42 doi: 10.2355/isijinternational.46.42
|
[6] |
Takamura J, Mizoguchi S. Metallurgy of oxides in steels: Ⅰ. Roles of oxides in steels performance // The Sixth International Iron and Steel Congress. Nagaya, 1990: 591
|
[7] |
胡志勇, 楊成威, 姜敏, 等. Ti脫氧鋼含Ti復合夾雜物誘導晶內針狀鐵素體的原位觀察. 金屬學報, 2011, 47(8):971
Hu Z Y, Yang C W, Jiang M, et al. In situ observation of intragranular acicular ferrite nucleated on complex titanium-containing inclusions in titanium deoxidized steel. Acta Metall Sin, 2011, 47(8): 971
|
[8] |
宋明明, 宋波, 胡春林, 等. Ti?Mg復合脫氧對鋼熱影響區組織和沖擊性能的影響. 工程科學學報, 2015, 37(7):883
Song M M, Song B, Hu C L, et al. Effect of Ti?Mg complex deoxidation on the microstructure and impact properties of HAZ in steel. Chin J Eng, 2015, 37(7): 883
|
[9] |
鄭萬, 吳振華, 李光強, 等. Ti?Mg復合脫氧和硫含量對鋼中夾雜物特征及MnS析出行為的影響. 工程科學學報, 2015, 37(3):292
Zheng W, Wu Z H, Li G Q, et al. Effects of Ti?Mg complex deoxidation and sulfur content on the characteristics of inclusions and the precipitation behavior of MnS. Chin J Eng, 2015, 37(3): 292
|
[10] |
萬響亮, 李光強, 吳開明. 原位觀察TiN粒子對低合金高強度鋼模擬焊接熱影響區粗晶區晶粒細化作用. 工程科學學報, 2016, 38(3):371
Wan X L, Li G Q, Wu K M. In-situ observations of grain refinement by TiN particles in the simulated coarse-grained heat-affected zone of a high-strength low-alloy steel. Chin J Eng, 2016, 38(3): 371
|
[11] |
Xu L Y, Yang J. Effects of Mg content on characteristics of nanoscale TiN particles and toughness of heat-affected zones of steel plates after high-heat-input welding. Metall Mater Trans A, 2020, 51(9): 4540 doi: 10.1007/s11661-020-05864-4
|
[12] |
Yang J, Xu L Y, Zhu K, et al. Improvement of HAZ toughness of steel plate for high heat input welding by inclusion control with Mg deoxidation. Steel Res Int, 2015, 86(6): 619 doi: 10.1002/srin.201400313
|
[13] |
Li X B, Min Y, Yu Z, et al. Effect of Mg addition on nucleation of intra-granular acicular ferrite in Al-killed low carbon steel. J Iron Steel Res Int, 2016, 23(5): 415 doi: 10.1016/S1006-706X(16)30066-8
|
[14] |
Xu L Y, Yang J, Wang R Z, et al. Effect of welding heat input on microstructure and toughness of heated-affected zone in steel plate with Mg deoxidation. Steel Res Int, 2017, 88(12): 1700157 doi: 10.1002/srin.201700157
|
[15] |
Zhang Y H, Yang J, Xu L Y, et al. The effect of Ca content on the formation behavior of inclusions in the heat affected zone of thick high-strength low-alloy steel plates after large heat input weldings. Metals, 2019, 9(12): 1328 doi: 10.3390/met9121328
|
[16] |
Sarma D S, Karasev A V, J?nsson P G. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels. ISIJ Int, 2009, 49(7): 1063 doi: 10.2355/isijinternational.49.1063
|
[17] |
Lee J L, Pan Y T. Effect of sulfur content on the microstructure and toughness of simulated heat-affected zone in Ti-killed steels. Metall Trans A, 1993, 24(6): 1399 doi: 10.1007/BF02668208
|
[18] |
Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels. ISIJ Int, 1996, 36(11): 1406 doi: 10.2355/isijinternational.36.1406
|
[19] |
Lee T K, Kim H J, Kang B Y, et al. Effect of inclusion size on the nucleation of acicular ferrite in welds. ISIJ Int, 2000, 40(12): 1260 doi: 10.2355/isijinternational.40.1260
|
[20] |
Kang Y B, Lee H G. Thermodynamic analysis of Mn-depleted near Ti oxide inclusions for intragranular nucleation of ferrite in steel. ISIJ Int, 2010, 50(4): 501 doi: 10.2355/isijinternational.50.501
|
[21] |
Zhang C J, Gao L N, Zhu L G. Effect of inclusion size and type on the nucleation of acicular ferrite in high strength ship plate steel. ISIJ Int, 2018, 58(5): 965 doi: 10.2355/isijinternational.ISIJINT-2017-696
|
[22] |
Xu L Y, Yang J, Wang R Z, et al. Effect of Mg content on the microstructure and toughness of heat-affected zone of steel plate after high heat input welding. Metall Mater Trans A, 2016, 47(7): 3354 doi: 10.1007/s11661-016-3535-2
|
[23] |
Xu L Y, Yang J, Wang R Z, et al. Effect of Mg addition on formation of intragranular acicular ferrite in heat-affected zone of steel plate after high-heat-input welding. J Iron Steel Res Int, 2018, 25(4): 433 doi: 10.1007/s42243-018-0054-y
|
[24] |
Lou H N, Wang C, Wang B X, et al. Inclusion evolution behavior of Ti?Mg oxide metallurgy steel and its effect on a high heat input welding HAZ. Metals, 2018, 8(7): 534 doi: 10.3390/met8070534
|
[25] |
Chai F, Yang C F, Hang S, et al. Effect of magnesium on inclusion formation in Ti-killed steels and microstructural evolution in welding induced coarse-grained heat affected zone. J Iron Steel Res Int, 2009, 16(1): 69 doi: 10.1016/S1006-706X(09)60013-3
|