Citation: | WEI Guang-sheng, ZHU Rong, TIAN Bo-han, DONG Kai, YANG Ling-zhi. Impact characteristics of submerged gas–solid injection in the manufacturing process of steel[J]. Chinese Journal of Engineering, 2020, 42(S): 47-53. doi: 10.13374/j.issn2095-9389.2020.04.05.s03 |
[1] |
森井廉. 電弧爐煉鋼法. 朱果靈, 譯. 北京: 冶金工業出版社, 2006
Ikei Mori. Electric Arc Furnace Steelmaking. Translated by Zhu G L. Beijing: Metallurgical Industry Press, 2006
|
[2] |
朱榮, 魏光升, 唐天平. 電弧爐煉鋼流程潔凈化冶煉技術. 煉鋼, 2018, 34(1):10
Zhu R, Wei G S, Tang T P. Technologies of purification production in electric arc furnace steelmaking processes. Steelmaking, 2018, 34(1): 10
|
[3] |
何春來, 朱榮, 董凱, 等. 基于煙氣成分分析的電弧爐煉鋼脫碳模型. 北京科技大學學報, 2010, 32(12):1537
He C L, Zhu R, Dong K, et al. Decarburization model of EAF steelmaking based on fume composition detecting. J Univ Sci Technol Beijing, 2010, 32(12): 1537
|
[4] |
Sandberg E, Lennox B, Undvall P. Scrap management by statistical evaluation of EAF process data. Control Eng Pract, 2007, 15(9): 1063 doi: 10.1016/j.conengprac.2007.01.001
|
[5] |
Zhang J L, Liu Y Q, Zhang Z W, et al. A new high quality EAF charge. Int J Miner Metall Mater, 2001, 8(1): 20
|
[6] |
Dankwah J R, Koshy P, Sahajwalla V. Reduction of FeO in EAF steelmaking slag by blends of metallurgical coke and end-of-life polyethylene terephthalate. Ironmaking Steelmaking, 2014, 41(6): 401 doi: 10.1179/1743281213Y.0000000125
|
[7] |
董凱, 朱榮, 劉文娟, 等. 電弧爐爐氣成分的影響因素. 北京科技大學學報, 2011, 33(增刊1): 77
Dong K, Zhu R, Liu W J, et al. Influencing factors of EAF off-gas composition. J Univ Sci Technol Beijing, 2011, 33(Suppl 1): 77
|
[8] |
Wei G S, Zhu R, Wu X T, et al. Technological innovations of carbon dioxide injection in EAF-LF steelmaking. JOM, 2018, 70(6): 969 doi: 10.1007/s11837-018-2814-3
|
[9] |
朱榮, 胡紹巖, 董凱, 等. 一種用于轉爐底部供氧噴粉的底吹元件: 中國專利, CN201610620240.0. 2017-02-08
Zhu R, Hu S Y, Dong K, et al. A kind of Bottom Blowing Element for Oxygen Supply and Powder Injection at the Bottom of Converter: China Patent, CN201610620240.0. 2017-02-08
|
[10] |
閻立懿. 現代超高功率電弧爐的技術特征. 特殊鋼, 2001, 22(5):1 doi: 10.3969/j.issn.1003-8620.2001.05.001
Yan L Y. Technology characteritics of contemporary ultra-high-power electric arc furnace. Spec Steel, 2001, 22(5): 1 doi: 10.3969/j.issn.1003-8620.2001.05.001
|
[11] |
董凱, 魏光升, 常軍, 等. 底吹條件下電弧爐煉鋼熔池的流體流動特性. 工程科學學報, 2018, 40(增刊1): 93
Dong K, Wei G S, Chang J, et al, Fluid flow characteristics of molten bath with bottom-blowing in EAF steelmaking, Chin J Eng, 2018, 40(Suppl 1): 93
|
[12] |
馬國宏, 朱榮, 劉潤藻, 等. 電弧爐煉鋼復合吹煉技術的發展及應用. 工業加熱, 2015, 44(2):1 doi: 10.3969/j.issn.1002-1639.2015.02.001
Ma G H, Zhu R, Liu R Z, et al. Development and application of electric arc furnace composite blowing technology. Ind Heat, 2015, 44(2): 1 doi: 10.3969/j.issn.1002-1639.2015.02.001
|
[13] |
賀慶, 郭征. 電弧爐煉鋼強化用氧技術的進展. 鋼鐵研究學報, 2004, 16(5):1 doi: 10.3321/j.issn:1001-0963.2004.05.001
He Q, Guo Z. Technical development of increasing oxygen used in EAF process. J Iron Steel Res, 2004, 16(5): 1 doi: 10.3321/j.issn:1001-0963.2004.05.001
|
[14] |
Alam M, Irons G, Brooks G, et al. Inclined jetting and splashing in electric arc furnace steelmaking. ISIJ Int, 2011, 51(9): 1439 doi: 10.2355/isijinternational.51.1439
|
[15] |
Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys, 1981, 39(1): 201 doi: 10.1016/0021-9991(81)90145-5
|
[16] |
Mu Z W, Zhang Z Y, Zhao T. Numerical simulation of 3-D flow field of spillway based on VOF method. Procedia Eng, 2012, 28: 808 doi: 10.1016/j.proeng.2012.01.814
|
[17] |
Kleefsman K M T, Fekken G, Veldman A E P, et al. A Volume-of-Fluid based simulation method for wave impact problems. J Comput Phys, 2005, 206(1): 363 doi: 10.1016/j.jcp.2004.12.007
|
[18] |
Wijayanta A T, Alam M S, Nakaso K, et al. Combustibility of biochar injected into the raceway of a blast furnace. Fuel Process Technol, 2014, 117: 53 doi: 10.1016/j.fuproc.2013.01.012
|
[19] |
Peters B. Measurements and application of a discrete particle model (DPM) to simulate combustion of a packed bed of individual fuel particles. Combust Flame, 2002, 131(1-2): 132 doi: 10.1016/S0010-2180(02)00393-0
|
[20] |
Li Q, Li M M, Kuang S B, et al. Numerical simulation of the interaction between supersonic oxygen jets and molten slag–metal bath in steelmaking BOF process. Metall Mater Trans B, 2015, 46(3): 1494 doi: 10.1007/s11663-015-0292-3
|
[21] |
Lv M, Zhu R, Guo Y G, et al. Simulation of flow fluid in the BOF steelmaking process. Metall Mater Trans B, 2013, 44(6): 1560 doi: 10.1007/s11663-013-9935-4
|
[22] |
Li M M, Li Q, Kuang S B, et al. Transferring characteristics of momentum/energy during oxygen jetting into the molten bath in BOFs: a computational exploration. Steel Res Int, 2016, 87(3): 288 doi: 10.1002/srin.201500034
|
[23] |
Feng Y Q, Yu A B. Assessment of model formulations in the discrete particle simulation of gas-solid flow. Ind Eng Chem Res, 2004, 43(26): 8378 doi: 10.1021/ie049387v
|
[24] |
Miyata M, Higuchi Y. Fluid dynamics analysis of gas jet with particles. ISIJ Int, 2017, 57(10): 1742 doi: 10.2355/isijinternational.ISIJINT-2017-107
|