<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
FAN Wei-jie, WU Yun-tao, MAO Jiang-hong, JIN Wei-liang, CHEN Jin-sen. Evolutionary regularity of bond property for reinforced concrete after electrochemical rehabilitation[J]. Chinese Journal of Engineering, 2021, 43(6): 778-785. doi: 10.13374/j.issn2095-9389.2020.04.01.004
Citation: FAN Wei-jie, WU Yun-tao, MAO Jiang-hong, JIN Wei-liang, CHEN Jin-sen. Evolutionary regularity of bond property for reinforced concrete after electrochemical rehabilitation[J]. Chinese Journal of Engineering, 2021, 43(6): 778-785. doi: 10.13374/j.issn2095-9389.2020.04.01.004

Evolutionary regularity of bond property for reinforced concrete after electrochemical rehabilitation

doi: 10.13374/j.issn2095-9389.2020.04.01.004
More Information
  • Corresponding author: E-mail: jhmao@nit.zju.edu.cn
  • Received Date: 2020-04-01
  • Publish Date: 2021-06-25
  • Reinforcement corrosion, due to the presence of chloride ions, is a major cause of the degradation of reinforced concrete structures. Nowadays, electrochemical rehabilitation (ER) is becoming a common technique for repairing reinforced structures. Due to the transmission properties of the micro-pores in concrete, chloride ions can be transferred to the outside of the concrete through the pores under the driven force of electric field. Compared with other conventional technologies, ER presents many advantages, such as high efficiency and little influence on the environment and surroundings. However, previous studies indicate that ER exhibits negative effect on the interfacial bonding properties of steel concrete. As the main influence factor for ER, varying current densities may consequently change the bond loss between steel and concrete. In addition, large current density significantly reduces interfacial bond. However, current studies lack relevant quantitative research results and fail to propose an effective method to solve the problem after electrochemical repair since aiming at electrochemical rehabilitation will most likely result in the bond deterioration of reinforced concrete. In this study, the bond-slip curves were obtained through central pull-out specimens after ER with various electrochemical parameters, and the relationship between the electrochemical parameters (current density and conduction time) and the bond behaviors were investigated. Finally, a degradation model of bond strength considering the influences of the two parameters mentioned was established. Results show that the bond strength decreases significantly with high current density and long conduction time. Using a current density of 5 A·m–2, reduction of the max bond force increased up to 22.6% and 56.9% under a conduction time of 15 and 28 d, respectively. The proposed model can be used to quantitatively characterize the reduction of bond strength after electrochemical rehabilitation. Good consistency of results was observed after comparing the evaluated results with that of the experiment.

     

  • loading
  • [1]
    彭懷德, 劉敦文, 戴兵, 等. 銹蝕植筋下新老混凝土面壓剪試驗研究. 工程科學學報, 2018, 40(1):23

    Peng H D, Liu D W, Dai B, et al. Experimental research on load-shear performance of interface between new and old concrete with corroded planting bar. Chin J Eng, 2018, 40(1): 23
    [2]
    施錦杰, 孫偉, 耿國慶. 恒電流脈沖法研究鋼筋在模擬混凝土孔溶液中的腐蝕行為. 北京科技大學學報, 2011, 33(6):727

    Shi J J, Sun W, Geng G Q. Steel corrosion in simulated concrete pore solutions using a galvanostatic pulse method. J Univ Sci Technol Beijing, 2011, 33(6): 727
    [3]
    Vera R, Villarroel M, Carvajal A M, et al. Corrosion products of reinforcement in concrete in marine and industrial environments. Mater Chem Phys, 2009, 114(1): 467 doi: 10.1016/j.matchemphys.2008.09.063
    [4]
    施錦杰, 孫偉, 耿國慶, 等. 電化學方法研究混凝土模擬液中細晶粒鋼的耐蝕性. 北京科技大學學報, 2011, 33(12):1471

    Shi J J, Sun W, Geng G Q, et al. Corrosion resistance of fine-grained rebar in simulated concrete pore solutions by means of electrochemical methods. J Univ Sci Technol Beijing, 2011, 33(12): 1471
    [5]
    朱雅仙, 朱錫昶, 羅德寬, 等. 電化學脫鹽對鋼筋混凝土性能的影響. 水運工程, 2002(5):8 doi: 10.3969/j.issn.1002-4972.2002.05.003

    Zhu Y X, Zhu X C, Luo D K, et al. Influences of electrochemical desalination on the behavior of reinforced concrete. Port Waterway Eng, 2002(5): 8 doi: 10.3969/j.issn.1002-4972.2002.05.003
    [6]
    徐建芝, 丁鑄, 邢峰. 鋼筋混凝土電化學脫鹽修復技術研究現狀. 混凝土, 2008(9):22 doi: 10.3969/j.issn.1002-3550.2008.09.008

    Xu J Z, Ding Z, Xing F. Research status of electrochemical chloride extraction (ECE) on steel reinforced concrete. Concrete, 2008(9): 22 doi: 10.3969/j.issn.1002-3550.2008.09.008
    [7]
    郭育霞. 鋼筋混凝土電化學除氯及除氯后性能研究[學位論文]. 大連: 大連理工大學, 2010

    Guo Y X. Study on Electrochemical Chloride Extraction and Post Performance of Reinforced Concrete [Dissertation]. Dalian: Dalian University of Technology, 2010
    [8]
    Glass G K, Buenfeld N R. The inhibitive effects of electrochemical treatment applied to steel in concrete. Corros Sci, 2000, 42(6): 923 doi: 10.1016/S0010-938X(99)00121-3
    [9]
    劉玉, 杜榮歸, 林昌健. 鋼筋混凝土結構的電化學處理及其研究進展. 腐蝕科學及防護技術, 2008, 20(2):125

    Liu Y, Du R G, Lin C J. Progress in electrochemical treatment applied to reinforced concrete. Corros Sci Prot Technol, 2008, 20(2): 125
    [10]
    高小建, 鄭秀梅, 楊英姿. 電化學參數對混凝土除氯效率的影響. 沈陽工業大學學報, 2010, 32(5):579

    Gao X J, Zheng X M, Yang Y Z. Influence of electrochemical parameters on chloride extraction efficiency. J Shenyang Univ Technol, 2010, 32(5): 579
    [11]
    祝頻, 鄭靚, 王新祥, 等. 電化學除鹽工藝參數優化及工程應用探索. 混凝土與水泥制品, 2010(2):4 doi: 10.3969/j.issn.1000-4637.2010.02.002

    Zhu P, Zheng L, Wang X X, et al. Parameters optimization of electrochemical chloride extraction and exploratory research on its engineering application. China Concr Cem Prod, 2010(2): 4 doi: 10.3969/j.issn.1000-4637.2010.02.002
    [12]
    Rodrigo de Almeida Souza L, de Medeiros M H F, Pereira E, et al. Electrochemical chloride extraction: Efficiency and impact on concrete containing 1% of NaCl. Constr Build Mater, 2017, 145: 435 doi: 10.1016/j.conbuildmat.2017.04.010
    [13]
    郭育霞, 貢金鑫. 鋼筋混凝土電化學除氯的試驗研究. 太原理工大學學報, 2011, 42(6):588

    Guo Y X, Gong J X. Study on electrochemical chloride extraction of reinforced concrete. J Taiyuan Univ Technol, 2011, 42(6): 588
    [14]
    Nguyen T H, Nguyen T A, Le V K, et al. Effect of electrochemical chloride extraction treatment on the corrosion of steel rebar in chloride contaminated mortar. Anti-Corros Methods Mater, 2016, 63(5): 377 doi: 10.1108/ACMM-12-2014-1473
    [15]
    雷智昊, 屈鋒, 孫浩然, 等. 鋼筋混凝土結構電化學除氯研究. 硅酸鹽通報, 2018, 37(9):2834

    Lei Z H, Qu F, Sun H R, et al. Research on electrochemical chloride extraction of reinforced concrete structures. Bull Chin Ceram Soc, 2018, 37(9): 2834
    [16]
    Ihekwaba N M, Hope B B, Hansson C M. Pull-out and bond degradation of steel rebars in ECE concrete. Cem Concr Res, 1996, 26(2): 267 doi: 10.1016/0008-8846(95)00210-3
    [17]
    鄭秀梅, 李廣軍, 支秀蘭. 電化學除鹽對鋼筋與混凝土間力的影響. 混凝土, 2011(6):46

    Zheng X M, Li G J, Zhi X L. Effect of electrochemical chloride extraction on adhesion strength between steel bars and concrete. Concrete, 2011(6): 46
    [18]
    Chang J J. Bond degradation due to the desalination process. Constr Build Mater, 2003, 17(4): 281 doi: 10.1016/S0950-0618(02)00113-7
    [19]
    Buenfeld N R, Broomfield J P. Influence of electrochemical chloride extraction on the bond between steel and concrete. Mag Concr Res, 2000, 52(2): 79 doi: 10.1680/macr.2000.52.2.79
    [20]
    Orellan J C, Escadeillas E, Arliguie G. Electrochemical chloride extraction: efficiency and side effects. Cem Concr Res, 2004, 34(2): 227 doi: 10.1016/j.cemconres.2003.07.001
    [21]
    梁巖, 羅小勇, 肖小瓊, 等. 銹蝕鋼筋混凝土黏結滑移性能試驗研究. 工業建筑, 2012, 42(10):95

    Liang Y, Luo X Y, Xiao X Q, et al. Experimental study on bond-slip performance of corroded reinforced concrete. Ind Constr, 2012, 42(10): 95
    [22]
    袁廣林, 郭操, 呂志濤. 高溫下鋼筋混凝土黏結性能的試驗與分析. 工業建筑, 2006, 36(2):57 doi: 10.3321/j.issn:1000-8993.2006.02.017

    Yuan G L, Guo C, Lv Z T. Experimental study on bond property of reinforced concrete at high temperatures. Ind Constr, 2006, 36(2): 57 doi: 10.3321/j.issn:1000-8993.2006.02.017
    [23]
    周子健, 霍靜思, 金寶. 高溫后鋼筋與混凝土黏結性能試驗與損傷機理分析. 實驗力學, 2018, 33(2):209 doi: 10.7520/1001-4888-16-283

    Zhou Z J, Huo J S, Jin B. Experimental study on bond behavior and damage mechanism analysis of reinforcing steel to concrete interface after elevated temperature. J Exp Mech, 2018, 33(2): 209 doi: 10.7520/1001-4888-16-283
    [24]
    王曉璐, 查曉雄, 張旭琛. 高溫下FRP筋與混凝土的黏結性能. 哈爾濱工業大學報, 2013, 45(6):8

    Wang X L, Zha X X, Zhang X C. Bond behavior of FRP rebar and concrete at elevated temperature. J Harbin Inst Technol, 2013, 45(6): 8
    [25]
    Lin H, Li Y, Yaqiang Li Y Q. A study on the deterioration of interfacial bonding properties of chloride-contaminated reinforced concrete after electrochemical chloride extraction treatment. Constr Build Mater, 2019, 197: 228 doi: 10.1016/j.conbuildmat.2018.11.196
    [26]
    Hao T Y, Lin H, Li Y, et al. Effects of electrochemical chloride extraction on the bonding properties of corroded reinforced concrete by the anode of magnesium phosphate cement bonding carbon fiber-reinforced plastics (CFRP). IOP Conf Ser Mater Sci Eng, 2019, 544: 012031 doi: 10.1088/1757-899X/544/1/012031
    [27]
    劉斌. 砼結構電化學除鹽離子分布及黏結性能研究[學位論文]. 煙臺: 煙臺大學, 2008

    Liu B. Study on chloride distribution and bonding properties of concrete structures after Electrochemical chloride extraction [Dissertation]. Yantai: Yantai University, 2008
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views (1350) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频