Citation: | ZHU Zhen-qiang, NING Hui, ZUO Peng-peng, WU Xiao-chun. Effect of strain amplitude on the isothermal fatigue behavior of H13 hot work die steel[J]. Chinese Journal of Engineering, 2021, 43(5): 656-662. doi: 10.13374/j.issn2095-9389.2020.04.01.003 |
[1] |
Srivastava A, Joshi V, Shivpuri R. Computer modeling and prediction of thermal fatigue cracking in die-casting tooling. Wear, 2004, 256(1-2): 38 doi: 10.1016/S0043-1648(03)00281-3
|
[2] |
Hawryluk M, Dolny A, Mroziński S. Low cycle fatigue studies of WCLV steel (1.2344) used for forging tools to work at higher temperatures. Arch Civil Mech Eng, 2018, 18(2): 465 doi: 10.1016/j.acme.2017.08.002
|
[3] |
左鵬鵬, 吳曉春, 曾艷, 等. 基于應變控制的4Cr5MoSiV1熱作模具鋼熱機械疲勞行為. 工程科學學報, 2018, 40(1):76
Zuo P P, Wu X C, Zeng Y, et al. Strain-controlled thermal-mechanical fatigue behavior of 4Cr5MoSiV1 hot work die steel. Chin J Eng, 2018, 40(1): 76
|
[4] |
Salem M, Le Roux S, Dour G, et al. Effect of aluminizing and oxidation on the thermal fatigue damage of hot work tool steels for high pressure die casting applications. Int J Fatigue, 2019, 119: 126 doi: 10.1016/j.ijfatigue.2018.09.018
|
[5] |
Bomba? D, Gintalas M, Kugler G, et al. Thermal fatigue behaviour of Fe-1.7C-11.3Cr-1.9Ni-1.2Mo roller steel in temperature range 500–700 ℃. Int J Fatigue, 2019, 121: 98 doi: 10.1016/j.ijfatigue.2018.12.007
|
[6] |
Lu Y, Ripplinger K, Huang X J, et al. A new fatigue life model for thermally-induced cracking in H13 steel dies for die casting. J Mater Process Technol, 2019, 271: 444 doi: 10.1016/j.jmatprotec.2019.04.023
|
[7] |
Liu B, Wang B, Yang X D, et al. Thermal fatigue evaluation of AISI H13 steels surface modified by gas nitriding with pre- and post-shot peening. Appl Surf Sci, 2019, 483: 45 doi: 10.1016/j.apsusc.2019.03.291
|
[8] |
Ghusoon R M, Rawaa H M, Basim H A. Effect of die geometry on thermal fatigue of tool steel in aluminium alloy die-casting. IOP Conf Ser Mater Sci Eng, 2019, 518(3): 032042
|
[9] |
Girisha V A, Joshi M M, Kirthan L J, et al. Thermal fatigue analysis of H13 steel die adopted in pressure-die-casting process. Sādhanā, 2019, 44: 148
|
[10] |
Meng C, Wu C, Wang X L, et al. Effect of thermal fatigue on microstructure and mechanical properties of H13 tool steel processed by selective laser surface melting. Metals, 2019, 9(7): 773 doi: 10.3390/met9070773
|
[11] |
吳曉春, 許珞萍. Uddeholm熱疲勞圖譜的分析與定量評定. 理化檢驗–物理分冊, 2002, 38(1):14
Wu X C, Xu L P. Quantitative analysis and evaluation of the Uddeholm heat-checking scale. Phys Test Chem Anal Part A, 2002, 38(1): 14
|
[12] |
Ma Y, Wang H, Chai X, et al. Thermal fatigue behavior of HHD hot work tool steel with structures. Mater Sci Eng Technol, 2018, 49(12): 1494
|
[13] |
Zuo P P, Wu X C, Zeng Y, et al. In-phase and out-of-phase thermomechanical fatigue behavior of 4Cr5MoSiV1 hot work die steel cycling from 400 ℃ to 700 ℃. Fatigue Fract Eng Mater Struct, 2018, 41(1): 159 doi: 10.1111/ffe.12669
|
[14] |
Grüning A, Lebsanft M, Scholtes B. Isothermal and thermal fatigue of tool steel AISI H11. Mater Sci Forum, 2010, 638-642: 3230 doi: 10.4028/www.scientific.net/MSF.638-642.3230
|
[15] |
Grüning A, Krauβ M, Scholtes B. Isothermal fatigue of tool steel AISI H11. Steel Res Int, 2008, 79(2): 111 doi: 10.1002/srin.200806325
|
[16] |
王海清. 低周疲勞領域中應力控制與應變控制的關系. 材料工程, 1983(4):17
Wang H Q. The relationship between stress control and strain control in the field of low cycle fatigue. J Mater Eng, 1983(4): 17
|
[17] |
Wang Y Q, Du W Q, Luo Y X. A mean plastic strain fatigue-creep life prediction and reliability analysis of AISI H13 based on energy method. J Mater Res, 2017, 32(22): 4254 doi: 10.1557/jmr.2017.385
|
[18] |
Zeng Y, Zuo P P, Wu X C, et al. Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13. Int J Miner Metall Mater, 2017, 24(9): 1004 doi: 10.1007/s12613-017-1489-z
|
[19] |
Wang M, Wu Y, Wei Q S, et al. Thermal fatigue properties of H13 hot-work tool steels processed by selective laser melting. Metals, 2020, 10(1): 116 doi: 10.3390/met10010116
|
[20] |
左鵬鵬. 壓鑄模具鋼熱機械疲勞行為及損傷機理研究[學位論文]. 上海: 上海大學, 2018
Zuo P P. Research on Thermomechanical Fatigue Behavior and Damage Mechanism of Die-Casting Die Steel[Dissertation]. Shanghai: Shanghai University, 2018
|
[21] |
Jiang Q C, Zhao X M, Qiu F, et al. The relationship between oxidation and thermal fatigue of martensitic hot-work die steels. Acta Metall Sin (Engl Lett)
|
[22] |
Reger M, RéMY L. Fatigue oxidation interaction in in 100 superalloy. Metall Trans A, 1988, 19(9): 2259 doi: 10.1007/BF02645049
|
[23] |
佟倩, 吳曉春, 周青春, 等. 熱作模具鋼SDH3熱疲勞機理. 材料熱處理學報, 2010, 31(5):81
Tong Q, Wu X C, Zhou Q C, et al. Thermal fatigue mechanism of SDH3 hot work steel. Trans Mater Heat Treat, 2010, 31(5): 81
|
[24] |
Qian L H, Wang Z G, Toda H, et al. High temperature low cycle fatigue and thermo-mechanical fatigue of a 6061Al reinforced with SiCW. Mater Sci Eng A, 2000, 291(1-2): 235 doi: 10.1016/S0921-5093(00)00892-3
|
[25] |
Neu R W. Crack paths in single-crystal Ni-base superalloys under isothermal and thermomechanical fatigue. Int J Fatigue, 2019, 123: 268 doi: 10.1016/j.ijfatigue.2019.02.022
|